Skip to main content

Evaluation of Unsupervised Segmentation Algorithms for Silhouette Extraction in Human Action Video Sequences

  • Conference paper
Visual Informatics: Sustaining Research and Innovations (IVIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7066))

Included in the following conference series:

  • 1531 Accesses

Abstract

The main motivation of this work is to find and evaluate solutions for generating binary masks (silhouettes) of foreground targets in an automatic way. To this end, four renowned unsupervised image segmentation algorithms are applied to foreground segmentation. A comparison among these algorithms is carried out using the MuHAVi dataset of multi-camera human action video sequences. This dataset presents significant challenges in terms of harsh illumination resulting for example in high contrast and deep shadows. The segmentation results have been objectively evaluated against manually derived ground-truth silhouettes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: An empirical evaluation, pp. 2294–2301 (2009)

    Google Scholar 

  2. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognition Letters 30(11), 977–984 (2009)

    Article  Google Scholar 

  3. Chen, D., Denman, S., Fooes, C., Sridharan, S.: Accurate silhouettes for surveillance - improved motion egmentation using graph cuts. In: Proceedings of the 2010 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2010, pp. 369–374. IEEE Computer Society (2010)

    Google Scholar 

  4. Comaniciu, D., Meer, P.: Robust analysis of feature spaces: Color image segmentation. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 750–755 (1997)

    Google Scholar 

  5. Davies, E.R.: Image analysis in crime: progress, problems and prospects. In: IEE Seminar Digests, pp. 105–112 (2005)

    Google Scholar 

  6. Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. on PAMI 23(8), 800–810 (2001)

    Article  Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  8. Gelasca, E.D., Ebrahimi, T.: On evaluating metrics for video segmentation algorithms. Invited paper of the Workshop on Video Processing and Quality Metrics, VPQM (2006)

    Google Scholar 

  9. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviours. IEEE Trans. on System, Man, and Cybernetics, Part C: Applications and Reviews 34(3), 334–352 (2004)

    Article  Google Scholar 

  10. Lee, W., Woo, W., Boyer, E.: Silhouette segmentation in multiple views. IEEE Trans. on PAMI 33(7), 1429–1441 (2011)

    Article  Google Scholar 

  11. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. on PAMI 26(11), 1452–1458 (2004)

    Article  Google Scholar 

  12. Singh, S., Velastin, S.A., Ragheb, H.: MuHAVi: A multicamera human action video dataset for the evaluation of action recognition methods, pp. 48–55 (2010)

    Google Scholar 

  13. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)

    Article  Google Scholar 

  14. Wollborn, M., Mech, R.: Refined procedure for objective evaluation of video object generation algorithms. Doc. ISO/IEC JTC1/SC29/WG11 M3448 1648 (1998)

    Google Scholar 

  15. Yin, F., Makris, D., Velastin, S.A., Orwell, J.: Quantitative evaluation of different aspects of motion trackers under various challenges. British Machine Vision Association (5), 1–11 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Usó, A., Salgues, G., Velastin, S.A. (2011). Evaluation of Unsupervised Segmentation Algorithms for Silhouette Extraction in Human Action Video Sequences. In: Badioze Zaman, H., et al. Visual Informatics: Sustaining Research and Innovations. IVIC 2011. Lecture Notes in Computer Science, vol 7066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25191-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25191-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25190-0

  • Online ISBN: 978-3-642-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics