Skip to main content

An Ensemble Approach to Improve Microaneurysm Candidate Extraction

  • Conference paper
e-Business and Telecommunications (ICETE 2010)

Abstract

In this paper, we present a novel approach to microaneurysm candidate extraction. To strengthen the accuracy of individual algorithms, we propose an ensemble of state-of-the-art candidate extractors. We apply a simulated annealing based method to select an optimal combination of such algorithms for a particular dataset. We also present a novel classification technique, which is based on a parallel ensemble of kernel density estimators. The experimental results show improvement in the positive likelihood rate compared to the individual candidate extractors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harding, S., Greenwood, R., Aldington, S., Gibson, J., Owens, D., Taylor, R., Kohner, E., Scanlon, P., Leese, G.: Grading and disease management in national screening for diabetic retinopathy in england and wales. Diabetic Medicine 20, 965–971 (2003)

    Article  Google Scholar 

  2. UK National Screening Committee: National Screening Programme for Diabetic Retinopathy (2009), http://www.retinalscreening.nhs.uk/

  3. Abramoff, M., Niemeijer, M., Suttorp-Schulten, M., Viergever, M.A., Russel, S.R., van Ginneken, B.: Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 31, 193–198 (2008)

    Article  Google Scholar 

  4. Hejlesen, O., Ege, B., Englemeier, K.H., Aldington, S., McCanna, L., Bek, T.: Tosca-imaging developing internet based image processing software for screening and diagnosis of diabetic retinopathy. In: MEDINFO 2004, pp. 222–226 (2004)

    Google Scholar 

  5. Niemeijer, M., van Ginneken, B., Cree, M., Mizutani, A., Quellec, G., Sanchez, C., Zhang, B., Hornero, R., Lamard, M., Muramatsu, C., Wu, X., Cazuguel, G., You, J., Mayo, A., Li, Q., Hatanaka, Y., Cochener, B., Roux, C., Karray, F., Garcia, M., Fujita, H., Abramoff, M.: Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Transactions on Medical Imaging 29, 185–195 (2010)

    Article  Google Scholar 

  6. Walter, T., Massin, P., Arginay, A., Ordonez, R., Jeulin, C., Klein, J.C.: Automatic detection of microaneurysms in color fundus images. Medical Image Analysis 11, 555–566 (2007)

    Article  Google Scholar 

  7. Spencer, T., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Computers and Biomedical Research 29, 284–302 (1996)

    Article  Google Scholar 

  8. Frame, A.J., Undrill, P.E., Cree, M.J., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.: A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Computers in Biology and Medicine 28, 225–238 (1998)

    Article  Google Scholar 

  9. Abdelazeem, S.: Microaneurysm detection using vessels removal and circular hough transform. In: Proceedings of the Nineteenth National Radio Science Conference, pp. 421–426 (2002)

    Google Scholar 

  10. Niemeijer, M., Staal, J., Abramoff, M.D., Suttorp-Schulten, M.A., van Ginneken, B.: Automatic detection of red lesions in digital color fundus photographs. IEEE Transactions on Medical Imaging 24, 584–592 (2005)

    Article  Google Scholar 

  11. Mizutani, A., Muramatsua, C., Hatanakab, Y., Suemoria, S., Haraa, T., Fujita, H.: Automated microaneurysm detection method based on double-ring filter in retinal fundus images. In: Medical Imaging 2009: Computer-Aided Diagnosis. Proceedings of SPIE, vol. 7260, pp. 1N1–1N8 (2009)

    Google Scholar 

  12. Fleming, A.D., Philip, S., Goatman, K.A.: Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Transactions on Medical Imaging 25(9), 1223–1232 (2006)

    Article  Google Scholar 

  13. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics gems IV, pp. 474–485 (1994)

    Google Scholar 

  14. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. The Journal of VLSI Signal Processing 38, 35–44 (2004)

    Article  Google Scholar 

  15. Chen, T.C., Chung, K.L.: An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding 83, 172–191 (2001)

    Article  MATH  Google Scholar 

  16. Lazar, I., Antal, B., Hajdu, A.: Microaneurysm detection in digital fundus images. Technical Report 2010/14(387), University of Debrecen, Hungary (2010)

    Google Scholar 

  17. Johnson, N.P.: Advantages to transforming the receiver operating characteristic (roc) curve into likelihood ratio co-ordinates. Stastics in Medicine 23, 2257–2266 (2004)

    Article  Google Scholar 

  18. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, B., Wu, X., You, J., Li, Q., Karray, F.: Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recogn. 43, 2237–2248 (2010)

    Article  Google Scholar 

  21. Cree, M.J., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: A fully automated comparative microaneurysm digital detection system. Eye 11, 622–628 (1997)

    Article  Google Scholar 

  22. Sondberg-madsen, N., Thomsen, C., Pena, J.M.: Unsupervised feature subset selection. In: Proceedings of the Workshop on Probabilistic Graphical Models for Classification, pp. 71–82 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antal, B., Lázár, I., Hajdu, A. (2012). An Ensemble Approach to Improve Microaneurysm Candidate Extraction. In: Obaidat, M.S., Tsihrintzis, G.A., Filipe, J. (eds) e-Business and Telecommunications. ICETE 2010. Communications in Computer and Information Science, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25206-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25206-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25205-1

  • Online ISBN: 978-3-642-25206-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics