Skip to main content

Rainfall Distribution Based on a Delaunay Triangulation Method

  • Chapter
Transactions on Computational Science XIV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6970))

Abstract

Many rainfall-run-off distributed models need rainfall data as input on a pixel by pixel basis, for each time interval. Due to the large amount of pixels that can make up a basin (proportional to the map scale), a fast and efficient method must be devised in order to obtain the rainfall field for each time interval (e.g. 20 minutes). Most models use interpolation methods such as the Inverse Distance Weighted. However, we propose the use of a Delaunay Triangulation using the incremental algorithm developed by Watson where the rainfall stations are used as the vertices of the triangles that represent a three dimensional plane of the rainfall. Once the equation of the plane is known, a rainfall value for each pixel is calculated. We compare both methods and evaluate the sensitivity to changes in time and spatial scales separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASCE.: Hydrology Handbook, 2nd edn. American Society of Civil Engineers (ASCE), New York (1996)

    Google Scholar 

  2. Chow, V.T., Madiment, D.R., Mays, L.W.: Applied Hydrology, p. 6. Mc Graw Hill (1988)

    Google Scholar 

  3. George, Y.L., Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences 14(9), 1044–1055 (2008)

    Google Scholar 

  4. Julien, P.Y.: Runoff and Sediment Modeling with CASC2D, GIS and Radar Data. Parallel Session, Parallel 15 (1998)

    Google Scholar 

  5. Poveda, G., Mesa, O.J., Carvajal, L.F.: Introduccion al Clima de Colombia. Universidad Nacional de Colombia, Medellin (2000)

    Google Scholar 

  6. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM National Conference, pp. 517–524 (1968)

    Google Scholar 

  7. Velez, J.I.: Desarrollo de un modelo conceptual y distribuido orientado a la simulacion de crecidas. Universidad Politecnica de Valencia Doctoral Thesis (2001)

    Google Scholar 

  8. Watson, D.F.: Computing the n-dimensional tessellation with application to Voronoi polytopes. The Computer Journal 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Velasquez, N., Botero, V., Velez, J.I. (2011). Rainfall Distribution Based on a Delaunay Triangulation Method. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds) Transactions on Computational Science XIV. Lecture Notes in Computer Science, vol 6970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25249-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25249-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25248-8

  • Online ISBN: 978-3-642-25249-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics