Abstract
In this paper, we deal with the difficult problem of automatic identification of multiple instruments playing sounds of the same pitch, i.e. in unison. Random forests have been selected to be used as a classifier. Training data represent isolated sounds of selected instruments which originate from three commonly used repositories, namely McGill University Master Samples, The University of IOWA Musical Instrument Samples, and RWC. Testing data represent audio records especially prepared by one of the authors for research purposes, and next carefully labeled. The experiments on identification of instruments in a frame-by-frame manner and the obtained results are presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bay, M., Beauchamp, J.W.: Harmonic Source Separation Using Prestored Spectra. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 561–568. Springer, Heidelberg (2006)
Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001), http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm
Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. Am. 105, 1933–1941 (1999)
Eggink, J., Brown, G.J.: Application of missing feature theory to the recognition of musical instruments in polyphonic audio. In: ISMIR (2003)
Foote, J.: An Overview of Audio Information Retrieval. Multimedia Systems 7(1), 2–11 (1999)
Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: Music Genre Database and Musical Instrument Sound Database. In: Proceedings of ISMIR, pp. 229–230 (2003)
Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: International Symposium on Music Information Retrieval, ISMIR (2000)
ISO: MPEG-7 Overview, http://www.chiariglione.org/mpeg/
Klapuri, A., Davy, M. (eds.): Signal Processing Methods for Music Transcription. Springer, New York (2006)
Kubera, E.: The role of temporal attributes in identifying instruments in polytimbral music recordings (in polish). Ph.D. dissertation, Polish-Japanese Institute of Information Technology (2010)
Kubera, E., Wieczorkowska, A., Raś, Z., Skrzypiec, M.: Recognition of Instrument Timbres in Real Polytimbral Audio Recordings. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 97–110. Springer, Heidelberg (2010)
Kubera, E., Kursa, M.B., Rudnicki, W.R., Rudnicki, R., Wieczorkowska, A.A.: All That Jazz in the Random Forest. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 543–553. Springer, Heidelberg (to appear, 2011)
Kursa, M.B., Kubera, E., Rudnicki, W.R., Wieczorkowska, A.A.: Random Musical Bands Playing in Random Forests. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 580–589. Springer, Heidelberg (2010)
Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Musical Instruments in Random Forest. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 281–290. Springer, Heidelberg (2009)
Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta: A System for Feature Selection. Fundamenta Informaticae 101, 271–285 (2010)
Kursa, M.B., Rudnicki, W.R.: Feature Selecion with the Boruta Package. J. Stat. Soft. 36, 1–13 (2010)
Livshin, A.A., Rodet, X.: Musical Instrument Identification in Continuous Recordings. In: Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX 2004), Naples, Italy, October 5–8 (2004)
MIDOMI, http://www.midomi.com/
Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in classification context. J. Applied Computer Science 16(2), 55–65 (2008)
Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)
Rudnicki, R.: Instrumental duos and trios. Recording and mixing. Trumpet - M. Postle, trombone - N. Noutch, marimba, vibraphone - E. Bertelli, piano - C. Li, D. Smyth (2010)
Sony Ericsson: TrackID, http://www.sonyericsson.com/trackid/
The University of IOWA Electronic Music Studios: Musical Instrument Samples, http://theremin.music.uiowa.edu/MIS.html
Wieczorkowska, A.A., Kubera, E.: Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. J. Intell. Inf. Syst. 34(3), 275–303 (2010)
Zhang, X.: Cooperative Music Retrieval Based on Automatic Indexing of Music by Instruments and Their Types. Ph.D thesis, Univ. North Carolina, Charlotte (2007)
Zhang, X., Marasek, K., Raś, Z.W.: Maximum Likelihood Study for Sound Pattern Separation and Recognition. In: 2007 International Conference on Multimedia and Ubiquitous Engineering MUE 2007, IEEE, pp. 807–812 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wieczorkowska, A.A., Kursa, M.B., Kubera, E., Rudnicki, R., Rudnicki, W.R. (2012). Playing in Unison in the Random Forest. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds) Security and Intelligent Information Systems. SIIS 2011. Lecture Notes in Computer Science, vol 7053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25261-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-25261-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25260-0
Online ISBN: 978-3-642-25261-7
eBook Packages: Computer ScienceComputer Science (R0)