Skip to main content

Scale Invariant Bipartite Graph Generative Model

  • Conference paper
Security and Intelligent Information Systems (SIIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7053))

Abstract

The purpose of this article is to present new undirected bigraph generator. Bigraphs (or bipartite graphs) contain nodes of two types and there exist edges only between nodes of different types. This data structure can be observed in various real-life scenarios. Random generator can be used to describe and better understand the scenarios. Moreover, the generator can output a wide range of synthetic datasets. We believe that the datasets can be utilized to evaluate performance of various algorithms that are deployed in such settings. The generative procedure is based on the preferential attachment principle. The principle is combined with the iterative growth mechanism and results in the power-law node degree distribution. Our algorithm extends the classic Barabási - Albert model. We obtain the same scaling exponent as in the classic model, when we set equal parameters for both modalities. However, when we abandon the symmetry we are able to build graphs with wider spectrum of scaling exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erdös, P., Renyi, A.: On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences (1960)

    Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t take all: Characterizing the competition for links on the web. Proc. Natl. Acad. Sci. USA 99(8), 5207–5211 (2002)

    Article  MATH  Google Scholar 

  4. Levene, M., Fenner, T.I., Loizou, G., Wheeldon, R.: A stochastic model for the evolution of the web. Computer Networks 39(3), 277–287 (2002)

    Article  Google Scholar 

  5. Dorogovtsev, S., Mendes, J., Samulkin, A.: Structure of growing networks: Exact solution of the barabasi-albert model. Physical Review Letters 85, 4633–4636 (2000)

    Article  Google Scholar 

  6. Albert, R., Barabási, A.: Topology of evolving networks: Local events and universality. Physical Review Letters 85(24), 5234–5237 (2000)

    Article  Google Scholar 

  7. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS), Redondo Beach, CA, USA, pp. 57–65. IEEE CS Press (2000)

    Google Scholar 

  9. Milgram, S.: The small-world problem. Psychology Today 2, 60–67 (1967)

    Google Scholar 

  10. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  11. Waxman, B.: Routing of mulitpoint connections. IEEE Journal of Selected Areas in Communications 6, 1617–1622 (1988)

    Article  Google Scholar 

  12. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM Press, New York (2005)

    Chapter  Google Scholar 

  14. Galaskiewicz, J., Wasserman, S., Rauschenbach, B., Bielefeld, W., Mullaney, P.: The influence of class, status, and market position on corporate interlocks in a regional network. Social Forces (1985)

    Google Scholar 

  15. Newman, M., Watts, D., Strogatz, S.: Random graph models of social networks. P. Natl. Acad. Sci. USA 99, 2566–2572 (2002)

    Article  MATH  Google Scholar 

  16. Guillaume, J.-L., Latapy, M.: Bipartite structure of all complex networks. Inf. Process. Lett. 90(5), 215–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eisterlehner, F., Hotho, A., Jaschke, R. (eds.): ECML PKDD Discovery Challenge 2009 (DC 2009). CEUR-WS.org, vol. 497 (September 2009)

    Google Scholar 

  18. Harrell, F.E.: Regression Modeling Strategies, with Applications to Linear Models, Survival Analysis and Logistic Regression. Springer, Heidelberg (2001) ISBN 0-387-95232-2

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pascal Bouvry Mieczysław A. Kłopotek Franck Leprévost Małgorzata Marciniak Agnieszka Mykowiecka Henryk Rybiński

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chojnacki, S., Kłopotek, M.A. (2012). Scale Invariant Bipartite Graph Generative Model. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds) Security and Intelligent Information Systems. SIIS 2011. Lecture Notes in Computer Science, vol 7053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25261-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25261-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25260-0

  • Online ISBN: 978-3-642-25261-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics