Skip to main content

Pattern Recognition in Biological Time Series

  • Conference paper
Advances in Artificial Intelligence (CAEPIA 2011)

Abstract

Knowledge extraction from gene expression data has been one of the main challenges in the bioinformatics field during the last few years. In this context, a particular kind of data, data retrieved in a temporal basis (also known as time series), provide information about the way a gene can be expressed during time. This work presents an exhaustive analysis of last proposals in this area, particularly focusing on those proposals using non–supervised machine learning techniques (i.e. clustering, biclustering and regulatory networks) to find relevant patterns in gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expresión data: the order-preserving submatrix problem. In: Proceedings of the 6th International Conference on Computational Biology, pp. 49–57 (2002)

    Google Scholar 

  2. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  3. Kiddle, S.J., et al.: Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana. Bioinformatics 26(3), 355–362 (2010)

    Article  Google Scholar 

  4. Frey, B.J.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    Article  Google Scholar 

  6. Guo, S., Wu, J., Ding, M., Feng, J.: Uncovering Interactions in the Frequency Domain. PLoS Computational Biology 4(5), e1000087+ (2008)

    Google Scholar 

  7. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regulatory network inference: Data integration in dynamic models – a review. Biosystems 96(1), 86103 (2009)

    Article  Google Scholar 

  8. Huang, W., Cao, X., Zhong, S.: Network-based comparison of temporal gene expression patterns. Bioinformatics 26(23), 2944–2951 (2010)

    Article  Google Scholar 

  9. Jaqaman, K., Dorn, J.F., Marco, E., Sorger, P.K., Danuser, G.: Phenotypic clustering of yeast mutants based on kinetochore microtubule dynamics. Bioinformatics 23(13), 1666–1673 (2007)

    Article  Google Scholar 

  10. Jiang, D., Pei, J., Zhang, A.: Interactive exploration of coherent patterns in time-series gene expression data. In: Proceedings of SIGKDD (2003)

    Google Scholar 

  11. Krishna, R., Li, C.T., Wollaston, V.B.: A temporal precedence based clustering method for gene expression microarray data. BMC Bioinformatics 11(1), 68+ (2010)

    Article  Google Scholar 

  12. Li, C.T., Yuan, Y., Wilson, R.: An unsupervised conditional random fields approach for clustering gene expression time series. Bioinformatics 24(21), 2467–2473 (2008)

    Article  Google Scholar 

  13. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)

    Article  Google Scholar 

  14. Madeira, S.C., Oliveira, A.L.: A linear time biclustering algorithm for time series gene expression data. Technical Report: INESC-ID, pp. 1–8 (2005)

    Google Scholar 

  15. Madeira, S.C., Oliveira, A.L.: A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series. Algorithms for Molecular Biology 4(8), 1–39 (2009)

    Google Scholar 

  16. Magni, P., Ferrazzi, F., Sacchi, L., Bellazzi, R.: TimeClust: a clustering tool for gene expression time series. Bioinformatics 24(3), 430–432 (2008)

    Article  Google Scholar 

  17. Martin, S., Zhang, Z., Martino, A., Faulon, J.L.: Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23(7), 866–874 (2007)

    Article  Google Scholar 

  18. Mukhopadhyay, N.D., Chatterjee, S.: Causality and pathway search in microarray time series experiment. Bioinformatics 23(4), 442–449 (2007)

    Article  Google Scholar 

  19. Nagarajan, R., Upreti, M.: Comment on causality and pathway search in microarray time series experiment. Bioinformatics 24(7), 1029–1032 (2008)

    Article  Google Scholar 

  20. Nepomuceno-Chamorro, I.A., Aguilar-Ruiz, J.S., Riquelme, J.C.: Inferring gene regression networks with model trees. BMC Bioinformatics 11, 517 (2010)

    Article  Google Scholar 

  21. Qu, J., Ng, M., Chen, A.L.: Constrained subspace clustering for time series gene expression data. In: The Fourth International Conference on Computational Systems Biology, pp. 323–330 (2010)

    Google Scholar 

  22. Rubio-Escudero, C., Martínez-Álvarez, F., Romero-Zaliz, R., Zwir, I.: Classification of gene expression profiles: Comparison of K-means and Expectation-Maximization algorithms. In: Prooceedings of the 8th International Conference on Hybrid Intelligent Systems, pp. 831–836 (2008)

    Google Scholar 

  23. Rubio-Escudero, C., Romero-Zaliz, R., Zwir, I., del Val, C.: Optimization of multi-classifiers for computational biology: application to gene finding and expression. Theoretical Chemistry Accounts: Theory, Computation, and Modeling 125(3), 599–611 (2010)

    Google Scholar 

  24. Segal, E., Wang, H., Koller, D.: Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(2), 264–272 (2003)

    Article  Google Scholar 

  25. Shiraishi, Y., Kimura, S., Okada, M.: Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics 26(8), 1073–1081 (2010)

    Article  Google Scholar 

  26. Xu, R., Wunsch II., D.C.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  27. Zhang, Y., Zha, H., Chu, C.H.: A time-series biclustering algorithm for revealing co-regulated genes. Bioinformatics 18(3), 606–611 (2005)

    Google Scholar 

  28. Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17), 2129–2135 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez-Vela, F., Martínez-Álvarez, F., Barranco, C.D., Díaz-Díaz, N., Rodríguez-Baena, D.S., Aguilar-Ruiz, J.S. (2011). Pattern Recognition in Biological Time Series. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds) Advances in Artificial Intelligence. CAEPIA 2011. Lecture Notes in Computer Science(), vol 7023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25274-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25274-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25273-0

  • Online ISBN: 978-3-642-25274-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics