Abstract
This paper presents an adaptation of the COR methodology to derive the rule base in TSK-type linguistic fuzzy rule-based systems. In particular, the work adapts an existing local search algorithm for Mamdani rules which was shown to find the best solutions, whilst reducing the number of evaluations in the learning process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Casillas, J., Cordón, O., Fernández de Viana, I., Herrera, F.: Learning cooperative linguistic fuzzy rules using the best-worst ant system algorithm. International Journal of Intelligent Systems 20, 433–452 (2005)
Casillas, J., Cordón, O., Herrera, F.: Cor: A methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules. IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics 32(4), 526–537 (2002)
Casillas, J., Cordón, O., Herrera, F.: Different approaches to induce cooperation in fuzzy linguistic models under the COR methodology. In: Technologies for constructing intelligent systems: Tasks, pp. 321–334. Physica-Verlag GmbH, Heidelberg (2002)
Cordón, O., Herrera, F.: A proposal for improving the accuracy of linguistic modeling. IEEE Transactions on Fuzzy Systems 8(3), 335–344 (2000)
Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific (2001)
delaOssa, L., Gámez, J.A., Puerta, J.M.: Learning cooperative fuzzy rules using fast local search algorithms. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2134–2141 (2006)
Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics. International Series in Operations Research & Management Science. Springer, Heidelberg (2003)
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7, 1–13 (1975)
Nozaki, K., Ishibuchi, H., Tanaka, H.: A simple but powerful heuristic method for generating fuzzy rules from numerical data. Fuzzy Sets and Systems 86, 251–270 (1997)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications for modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116–132 (1985)
Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Information Science 8, 199–249 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cózar, J., de la Ossa, L., Puerta, J.M. (2011). Learning Cooperative TSK-0 Fuzzy Rules Using Fast Local Search Algorithms. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds) Advances in Artificial Intelligence. CAEPIA 2011. Lecture Notes in Computer Science(), vol 7023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25274-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-25274-7_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25273-0
Online ISBN: 978-3-642-25274-7
eBook Packages: Computer ScienceComputer Science (R0)