Skip to main content

A Proof Pearl with the Fan Theorem and Bar Induction

Walking through Infinite Trees with Mixed Induction and Coinduction

  • Conference paper
Programming Languages and Systems (APLAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7078))

Included in the following conference series:

Abstract

We study temporal properties over infinite binary red-blue trees in the setting of constructive type theory. We consider several familiar path-based properties, typical to linear-time and branching-time temporal logics like LTL and CTL*, and the corresponding tree-based properties, in the spirit of the modal μ-calculus. We conduct a systematic study of the relationships of the path-based and tree-based versions of “eventually always blueness” and mixed inductive-coinductive “almost always blueness” and arrive at a diagram relating these properties to each other in terms of implications that hold either unconditionally or under specific assumptions (Weak Continuity for Numbers, the Fan Theorem, Lesser Principle of Omniscience, Bar Induction).

We have fully formalized our development with the Coq proof assistant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive analysis. Math. Log. Quart. 51(4), 360–364 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, U.: From coinductive proofs to exact real arithmetic: theory and applications. Logical Methods in Comput. Sci. 7(1) (2011)

    Google Scholar 

  3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  4. Bezem, M., Nakata, K., Uustalu, T.: On streams that are finitely red (submitted for publication 2011) (manuscript)

    Google Scholar 

  5. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  6. Coquand, T., Spiwack, A.: Constructively finite? In: Laureano Lambán, L., Romero, A., Rubio, J. (eds.) Scientific Contributions in Honor of Mirian Andrés Gómez Universidad de La Rioja (2010)

    Google Scholar 

  7. Coupet-Grimal, S.: An axiomatization of Linear Temporal Logic in the Calculus of Inductive Constructions. J. of Logic and Comput. 13(6), 801–813 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dam, M.: CTL* and ECTL* as fragments of the modal mu-calculus. Theor. Comput. Sci. 126(1), 77–96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively: an exercise in mixed induction and coinduction. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 100–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 905–1072. MIT Press (1990)

    Google Scholar 

  11. Escardó, M.H., Oliva, P.: Selection functions, bar recursion and backward induction. Math. Struct. in Comput. Sci. 20(2), 127–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escardó, M.H., Oliva, P.: What sequential games, the Tychonoff Theorem and the double-negation shift have in common. In: Proc. of 3rd ACM SIGPLAN Wksh. on Mathematically Structured Functional Programming, MSFP 2010, pp. 21–32. ACM Press (2010)

    Google Scholar 

  13. Ishihara, H.: An omniscience principle, the König Lemma and the Hahn-Banach theorem. Math. Log. Quart. 36(3), 237–240 (1990)

    Article  MATH  Google Scholar 

  14. Ishihara, H.: Weak König’s lemma implies Brouwer’s fan theorem: a direct proof. Notre Dame J. of Formal Logic 47(2), 249–252 (2006)

    Article  MATH  Google Scholar 

  15. Hancock, P., Pattinson, D., Ghani, N.: Representations of stream processors using nested fixed points. Logical Methods in Comput. Sci. 5(3) (2009)

    Google Scholar 

  16. Mendler, N.P.: Inductive types and type constraints in the second-order lambda calculus. Ann. of Pure and Appl. Logic 51(1-2), 159–172 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miculan, M.: On the formalization of the modal μ-Calculus in the Calculus of Inductive Constructions. Inform. and Comput. 164(1), 199–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakata, K., Uustalu, T.: Resumptions, weak bisimilarity and big-step semantics for While with interactive I/O: an exercise in mixed induction-coinduction. In: Aceto, L., Sobocinski, P. (eds.) Proc. of 7th Wksh. on Structural Operational Semantics, SOS 2010, Electron. Proc. in Theor. Comput. Sci., vol. 32, pp. 57–75 (2010)

    Google Scholar 

  19. Raffalli, C.: L’ Arithmétiques Fonctionnelle du Second Ordre avec Points Fixes. PhD thesis, Université Paris VII (1994)

    Google Scholar 

  20. Sprenger, C.: A Verified Model Checker for the Modal μ-calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Tsai, M.-H., Wang, B.-Y.: Formalization of CTL* in Calculus of Inductive Constructions. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 316–330. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. I, II. North-Holland (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakata, K., Uustalu, T., Bezem, M. (2011). A Proof Pearl with the Fan Theorem and Bar Induction. In: Yang, H. (eds) Programming Languages and Systems. APLAS 2011. Lecture Notes in Computer Science, vol 7078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25318-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25318-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25317-1

  • Online ISBN: 978-3-642-25318-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics