Abstract
Leukemia is a disease characterized by an abnormal increase of white blood cells. This disease is divided into two types: lymphoblastic and myeloid, each of which is divided in subtypes. Differentiating the type and subtype of acute leukemia is important in order to determine the correct type of treatment to be assigned by the affected person. Diagnostic tests available today, such as those based on cell morphology, have a high error rate. Others, as those based on cytometry or microarray, are expensive. In order to avoid those drawbacks this paper proposes the automatic selection of a fuzzy model for accurate classification of types and subtypes of acute leukemia based on cell morphology. Our experimental results reach up to 93.52% in classification of acute leukemia types, 87.36% in lymphoblastic subtypes and 94.42% in myeloid subtypes. Our results show a significant improvement compared with classifiers which parameters were manually tuned using the same data set. Details of the proposed method, as well as experiments and results are shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adjouadi, M., Ayala, M., Cabrerizo, M., Zong, N., Lizarraga, G., Rossman, M.: Classification of leukemia blood samples using neural networks. Annals of Biomedical Engineering 38, 1473–1482 (2010), http://dx.doi.org/10.1007/s10439-009-9866-z , doi:10.1007/s10439-009-9866-z
Bennett, J.M., Catovsky, D., Daniel, M.T., Flandrin, G., Galton, D.A.G., Gralnick, H.R., Sultan, C.: Proposals for the classification of the acute leukaemias french-american-british (fab) co-operative group. British Journal of Haematology 33(4), 451–458 (1976), http://dx.doi.org/10.1111/j.1365-2141.1976.tb03563.x
Bozzone, D.M.: The biology of cancer: Leukemia. Chelsea House Pub. (2009)
Engelbrecht, A.: Computational intelligence: an introduction, 2nd edn. Wiley (2007)
Galindo, M.C.: Obtención de características de subtipos de leucemia en imágenes digitales de células sanguíneas para su clasificación. Master’s thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica (2008)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Professional (January 1989), http://www.worldcat.org/isbn/0201157675
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999), http://www.sciencemag.org/content/286/5439/531.abstract
Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)
Huang, C., Liao, W.: A comparative study of feature selection methods for probabilistic neural networks in cancer classification (2003)
Janikow, C., Faifer, M.: Fuzzy decision forest. In: 19th International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2000, pp. 218–221. IEEE (2000)
Kanth, B., Giridhar, B.: Gene expression based acute leukemia cancer classification: A neuro-fuzzy approach. International Journal of Biometrics and Bioinformatics (IJBB) 4(4), 136 (2010)
Keller, J.M., Gray, M.R., Givens Jr., J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 15(4), 580–585 (1985)
Leukemia & Lymphoma Society: http://www.lls.org/#/diseaseinformation/leukemia/
Morales, B.A.: Extracción de características en imágenes de células de médula ósea para la clasificación de leucemias agudas. Master’s thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica (2007)
Reta, C., Altamirano, L., Gonzalez, J., Diaz, R., Guichard, J.: Segmentation of bone marrow cell images for morphological classification of acute leukemia. In: Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference, FLAIRS 2010 (2010)
Reta, C.: Segmentación y clasificación de células con leucemia a partir de información contextual en imágenes digitales. Master’s thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica (2009)
Reyes, C.: On the design of a fuzzy relational neural network for automatic speech recognition. Ph.D. thesis, Doctoral Dissertation, The Florida State University, Tallahassee, Fl (1994)
Su, M., Basu, M., Toure, A.: Multi-domain gating network for classification of cancer cells using gene expression data. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 1, pp. 286–289. IEEE (2002)
Wang, H.: Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery. IGI Global (2008)
Xu, R., Anagnostopoulos, G., Wunsch, D., et al.: Tissue classification through analysis of gene expression data using a new family of art architectures. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 1, pp. 300–304. IEEE (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rosales-Pérez, A., Reyes-García, C.A., Gómez-Gil, P., Gonzalez, J.A., Altamirano, L. (2011). Genetic Selection of Fuzzy Model for Acute Leukemia Classification. In: Batyrshin, I., Sidorov, G. (eds) Advances in Artificial Intelligence. MICAI 2011. Lecture Notes in Computer Science(), vol 7094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25324-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-25324-9_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25323-2
Online ISBN: 978-3-642-25324-9
eBook Packages: Computer ScienceComputer Science (R0)