Skip to main content

Intelligent Control of Nonlinear Dynamic Plants Using a Hierarchical Modular Approach and Type-2 Fuzzy Logic

  • Conference paper
Advances in Soft Computing (MICAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7095))

Included in the following conference series:

  • 971 Accesses

Abstract

In this paper we present simulation results that we have at this moment with a new approach for intelligent control of non-linear dynamical plants. First we present the proposed approach for intelligent control using a hierarchical modular architecture with type-2 fuzzy logic used for combining the outputs of the modules. Then, the approach is illustrated with two cases: aircraft control and shower control and in each problem we explain its behavior. Simulation results of the two case show that proposed approach has potential in solving complex control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abusleme, H., Angel, C.: Fuzzy control of an unmanned flying vehicle, Ph.d. Thesis, Ponti-ficia University of Chile (2000)

    Google Scholar 

  2. Bargiela, A., Wu, P.: Granular Computing: An Introduction. Kluwer Academic Publish, Dordercht (2003)

    Book  MATH  Google Scholar 

  3. Bargiela, A., Wu, P.: The roots of Granular Computing. In: GrC 2006, pp. 806–809. IEEE (2006)

    Google Scholar 

  4. Blakelock, J.: Automatic Control of Aircraft and Missiles. Prentice-Hall (1965)

    Google Scholar 

  5. Coley, A.: An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific (1999)

    Google Scholar 

  6. The 2011 IEEE Internaional Confenrece on Granular Computing Sapporo, GrC 2011, Japan, August 11-13. IEEE Computer Society (2011)

    Google Scholar 

  7. Dorf, R.: Modern Control Systems. Addison-Wesley Pub. Co. (1997)

    Google Scholar 

  8. Dwinnell, J.: Principles of Aerodynamics. McGraw-Hill Company (1929)

    Google Scholar 

  9. Engelen, H., Babuska, R.: Fuzzy logic based full-envelope autonomous flight control for an atmospheric re-entry spacecraft. Control Engineering Practice Journal 11(1), 11–25 (2003)

    Article  Google Scholar 

  10. Federal Aviation Administration, Airplane Flying Handbook, U.S. Department of Transportation Federal Aviation Administration (2007)

    Google Scholar 

  11. Federal Aviation Administration. Pilot’s Handbook of Aeronautical Knowledge, U.S. Department of Transportation Federal Aviation Administration (2008)

    Google Scholar 

  12. Gardner A.: U.S Warplanes The F-14 Tomcat, The Rosen Publishing Group (2003)

    Google Scholar 

  13. Gibbens, P., Boyle, D.: Introductory Flight Mechanics and Performance. University of Sydney, Australia. Paper (1999)

    Google Scholar 

  14. Goedel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton University Press, Princeton (1940)

    Google Scholar 

  15. Haupt R., Haupt S.: Practical Genetic Algorithm. Wiley-Interscience (2004)

    Google Scholar 

  16. Holmes, T.: US Navy F-14 Tomcat Units of Operation Iraqi Freedom, Osprey Publishing Limited (2005)

    Google Scholar 

  17. Jamshidi, M., Vadiee, N., Ross, T.: Fuzzy Logic and Control: Software and Hardware Applications, vol. 2. Prentice-Hall, University of New Mexico (1993)

    Google Scholar 

  18. Kadmiry, B., Driankov, D.: A fuzzy flight controller combining linguistic and model based fuzzy control. Fuzzy Sets and Systems Journal 146(3), 313–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karnik, N., Mendel, J.: Centroid of a type-2 fuzzy set. Information Sciences 132, 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Keviczky, T., Balas, G.: Receding horizon control of an F-16 aircraft: A comparative study. Control Engineering Practice Journal 14(9), 1023–1033 (2006)

    Article  Google Scholar 

  21. Liu, M., Naadimuthu, G., Lee, E.S.: Trayectory tracking in aircraft landing operations management using the adaptive neural fuzzy inference system. Computers & Mathematics with Applications Journal 56(5), 1322–1327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. McLean D.: Automatic Flight Control System. Prentice Hall (1990)

    Google Scholar 

  23. McRuer, D., Ashkenas, I., Graham, D.: Aircraft Dynamics and Automatic Control. Princeton University Press (1973)

    Google Scholar 

  24. Melin, P., Castillo, O.: Intelligent control of aircraft dynamic systems with a new hybrid neuro- fuzzy–fractal Approach. Journal Information Sciences 142(1) (May 2002)

    Google Scholar 

  25. Melin, P., Castillo, O.: Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Journal of Applied Soft computing 3(4) (December 2003)

    Google Scholar 

  26. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  27. Mitchell, M.: An Introduction to Genetic Algorithms. Massachusetts Institute of Technology (1999)

    Google Scholar 

  28. Morelli, E.A.: Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics, NASA Langley Research Center, Hampton, Virginia (1995)

    Google Scholar 

  29. Nelson, R.: Flight Stability and automatic control, 2nd edn. Department of Aerospace and Mechanical Engineering, University of Notre Dame., McGraw Hill (1998)

    Google Scholar 

  30. Pedrycz, W., Skowron, A., et al.: Handbook granular computing. Wiley Interscience, New York (2008)

    Book  Google Scholar 

  31. Rachman, E., Jaam, J., Hasnah, A.: Non-linear simulation of controller for longitudinal control augmentation system of F-16 using numerical approach. Information Sciences Journal 164(1-4), 47–60 (2004)

    Article  MATH  Google Scholar 

  32. Reiner, J., Balas, G., Garrard, W.: Flight control design using robust dynamic inversion and time- scale separation. Automatic Journal 32(11), 1493–1504 (1996)

    Article  MATH  Google Scholar 

  33. Sanchez, E., Becerra, H., Velez, C.: Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. Journal of Information Sciences 177(10), 1999–2022 (2007)

    Article  Google Scholar 

  34. Sefer, K., Omer, C., Okyay, K.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Systems with Applications Journal 37(2), 1229–1234 (2010)

    Article  Google Scholar 

  35. Song, Y., Wang, H.: Design of Flight Control System for a Small Unmanned Tilt Rotor Air-craft. Chinese Journal of Aeronautics 22(3), 250–256 (2009)

    Article  MathSciNet  Google Scholar 

  36. Walker, D.J.: Multivariable control of the longitudinal and lateral dynamics of a fly by wire helicopter. Control Engineering Practice 11(7), 781–795 (2003)

    Article  Google Scholar 

  37. Wu, D.: A Brief Tutorial on Interval Type-2 Fuzzy Sets and Systems (July 22, 2010)

    Google Scholar 

  38. Wu, D., Jerry, M.: On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems. IEEE T. Fuzzy Systems 19(1), 179–192 (2011)

    Article  Google Scholar 

  39. Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput. 2, 23–25 (1998)

    Article  Google Scholar 

  40. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3, 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cervantes, L., Castillo, O., Melin, P. (2011). Intelligent Control of Nonlinear Dynamic Plants Using a Hierarchical Modular Approach and Type-2 Fuzzy Logic. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25330-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25329-4

  • Online ISBN: 978-3-642-25330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics