Skip to main content

Clustering of Heterogeneously Typed Data with Soft Computing - A Case Study

  • Conference paper
Advances in Soft Computing (MICAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7095))

Included in the following conference series:

Abstract

The problem of finding clusters in arbitrary sets of data has been attempted using different approaches. In most cases, the use of metrics in order to determine the adequateness of the said clusters is assumed. That is, the criteria yielding a measure of quality of the clusters depends on the distance between the elements of each cluster. Typically, one considers a cluster to be adequately characterized if the elements within a cluster are close to one another while, simultaneously, they appear to be far from those of different clusters. This intuitive approach fails if the variables of the elements of a cluster are not amenable to distance measurements, i.e., if the vectors of such elements cannot be quantified. This case arises frequently in real world applications where several variables (if not most of them) correspond to categories. The usual tendency is to assign arbitrary numbers to every category: to encode the categories. This, however, may result in spurious patterns: relationships between the variables which are not really there at the offset. It is evident that there is no truly valid assignment which may ensure a universally valid numerical value to this kind of variables. But there is a strategy which guarantees that the encoding will, in general, not bias the results. In this paper we explore such strategy. We discuss the theoretical foundations of our approach and prove that this is the best strategy in terms of the statistical behavior of the sampled data. We also show that, when applied to a complex real world problem, it allows us to generalize soft computing methods to find the number and characteristics of a set of clusters. We contrast the characteristics of the clusters gotten from the automated method with those of the experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley Series in Probability and Statistics. Wiley- Interscience (2002)

    Google Scholar 

  2. Barbará, D., Li, Y., Couto, J.: Coolcat: an entropy-based algorithm for categorical clustering. In: CIKM 2002: Proceedings of the Eleventh International Conference on Information and Knowledge Management, pp. 582–589. ACM, New York (2002)

    Chapter  Google Scholar 

  3. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A comparative evaluation. In: SDM, pp. 243–254 (2008)

    Google Scholar 

  4. Cesario, E., Manco, G., Ortale, R.: Top-down parameter-free clustering of high-dimensional categorical data. IEEE Trans. on Knowl. and Data Eng. 19(12), 1607–1624 (2007)

    Article  Google Scholar 

  5. Chandola, V., Boriah, S., Kumar, V.: A framework for exploring categorical data. In: SDM, pp. 185–196 (2009)

    Google Scholar 

  6. Chang, C.-H., Ding, Z.-K.: Categorical data visualization and clustering using subjective factors. Data Knowl. Eng. 53(3), 243–262 (2005)

    Article  Google Scholar 

  7. Ganti, V., Gehrke, J., Ramakrishnan, R.: Cactus—clustering categorical data using summaries. In: KDD 1999: Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 73–83. ACM, New York (1999)

    Chapter  Google Scholar 

  8. Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: an approach based on dynamical systems. The VLDB Journal 8(3-4), 222–236 (2000)

    Article  Google Scholar 

  9. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. In: ICDE Conference, pp. 512–521 (1999)

    Google Scholar 

  10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 1st edn. Morgan Kaufmann, San Francisco (2001)

    MATH  Google Scholar 

  11. Hsu, C.-C., Wang, S.-H.: An integrated framework for visualized and exploratory pattern discovery in mixed data. IEEE Trans. on Knowl. and Data Eng. 18(2), 161–173 (2006)

    Article  Google Scholar 

  12. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2(3), 283–304 (1998)

    Article  Google Scholar 

  13. Lee, J., Lee, Y.-J., Park, M.: Clustering with Domain Value Dissimilarity for Categorical Data. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 310–324. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Johansson, S., Jern, M., Johansson, J.: Interactive quantification of categorical variables in mixed data sets. In: IV 2008: Proceedings of the 2008 12th International Conference Information Visualisation, pp. 3–10. IEEE Computer Society, Washington, DC, USA (2008)

    Chapter  Google Scholar 

  15. Koyuturk, M., Grama, A., Ramakrishnan, N.: Compression, clustering, and pattern discovery in very high-dimensional discrete-attribute data sets. IEEE Trans. on Knowl. and Data Eng. 17(4), 447–461 (2005)

    Article  Google Scholar 

  16. Wang, K., Xu, C., Liu, B.: Clustering transactions using large items. In: ACM CIKM Conference, pp. 483–490 (1999)

    Google Scholar 

  17. Yan, H., Chen, K., Liu, L.: Efficiently clustering transactional data with weighted coverage density. In: CIKM 2006: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 367–376. ACM, New York (2006)

    Google Scholar 

  18. Yang, Y., Guan, X., You, J.: Clope: a fast and effective clustering algorithm for transactional data. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 682–687. ACM, New York (2002)

    Google Scholar 

  19. Haykin, S.: Neural networks: A comprehensive foundation. MacMillan (1994)

    Google Scholar 

  20. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. J. Intell. Inf. Syst. 17(2-3), 107–145 (2001)

    Article  MATH  Google Scholar 

  21. Jenssen, R., Hild, K.E., Erdogmus, D., Principe, J.C., Eltoft, T.: Clustering using Renyi’s entropy. In: Proceedings of the International Joint Conference on Neural Networks 2003, vol. 1, pp. 523–528 (2003)

    Google Scholar 

  22. Lee, Y., Choi, S.: Minimum entropy, k-means, spectral clustering. In: Proceedings IEEE International Joint Conference on Neural Networks, 2004, vol. 1 (2005)

    Google Scholar 

  23. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Scientific American (July 1949)

    Google Scholar 

  24. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clustering’s comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080 (2009)

    Google Scholar 

  25. Teuvo, K.: Self-organizing maps. Springer-Verlag, New York, Inc., Secaucus (1999)

    MATH  Google Scholar 

  26. http://udel.edu/~mcdonald/statspearman.html (August 26, 2011)

  27. http://www.mei.org.uk/files/pdf/Spearmanrcc.pdf (September 9, 2011)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuri-Morales, A., Trejo-Baños, D., Cortes-Berrueco, L.E. (2011). Clustering of Heterogeneously Typed Data with Soft Computing - A Case Study. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25330-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25329-4

  • Online ISBN: 978-3-642-25330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics