Abstract
This paper presents a novel hybrid adaptive fuzzy controller for the regulation of speed on induction machines with direct torque control. The controller is based on a fuzzy system and PID control with decoupled gains. Genetic programming techniques are used for offline optimizations of the normalization constants of fuzzy membership function ranges. Fuzzy cluster means is introduced for online optimization on the limits of triangular fuzzy membership functions. Finally simulations in LabVIEW are presented validating the response of the controller with and without load on the machine; results and conclusions are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Astrom, K., Hagglund, T.: PID Controllers: Theory, Design and Tuning. Instrument Society of America, USA (1995)
Bourmistrova, A., Khantis, S.: Control system design optimisation via genetic programming. In: IEEE Congress on Evolutionary Computation, CEC 2007, Singapore, pp. 1993–2000 (2007)
Cheng-Zhi, C., Guang-Hua, W., Qi-Dong, Z., Xin, W.: Optimization Design of Fuzzy Neural Network Controller in Direct Torque Control System. In: Third International Conference on Machine Learning and Cybemetics, Shanghai, vol. 1, pp. 378–382 (2004)
Stephen, C.: Developing commercial applications of intelligent control. IEEE Control Systems Magazine 17(2), 94–100 (1997)
Depenbrock, M.: Direkte Selbtregelung (DSR) für hochdynamische Drehfeldantribe mit Stromrichterschaltung. ETZ A 7, 211–218 (1985)
Dufoo, S., Pacas, M.: Predictive Direct Torque Control of an Induction Machine with Unsymmetrical Rotor. In: IEEE International Conference on Industrial Technology, pp. 1851–1856 (2010)
Goldbergh, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Massachusetts (1989)
Grabowski, P.Z., Blaabjerg, F.: Direct Torque Neuro-Fuzzy Control of Induction Motor Drive. In: 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol. 2, pp. 557–562 (1998)
Li, H.: Fuzzy DTC for Induction Motor with Optimized Command Stator Flux. In: 8th World Congress on Intelligent Control and Automation, Jinan, China, pp. 4958–4961 (2010)
Koza John, R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
LabVIEW, graphical programming language, http://www.ni.com/labview
Mamdani, E.H.: Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. Institution of Electrical Engineers, Control & Sciences 121(12), 1585–1588 (1974)
Sui, M., Zhang, K., Yang, J.: An Improved Sensorless DSVM-DTC of Induction Motor Based MRAFC. In: 7th World Congress on Intelligent Control and Automation, pp. 775–780 (2008)
Pedro., P.C., Rivas, J.J.R.: A Small Neural Network Structure Application in Speed Estimation of an Induction Motor Using Direct Torque Control. In: IEEE 32nd Annual Specialists Conference on Power Electronic, vol. 2, pp. 823–827 (2001)
Pedro, P.C., Javier, S.: Maquinas Electricas y Tecnicas Modernas de Control. Grupo, A. (ed.), Mexico (2008)
Pedro, P.-C., Fernando, D.: Ramirez-Figueroa. In: Intelligent Control Systems with LabVIEW. Springer, London (2009)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15, 116–132 (1985)
Takahashi, I., Noguchi, T.: Quick torque response control of an induction motor using a new concept. IEEE J. Tech. Meeting on Rotating Machines, paper RM84-76, 61–70 (1984)
Peter, V.: Sensorless Vector and Direct Torque Control. Oxford University Press (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Figueroa, F.D.R., Caeiros, A.V.M. (2011). Hybrid Intelligent Speed Control of Induction Machines Using Direct Torque Control. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-25330-0_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25329-4
Online ISBN: 978-3-642-25330-0
eBook Packages: Computer ScienceComputer Science (R0)