Abstract
In this paper we present a new method for simulating deformable models that interact with external forces of large scale. The proposed method comprises an intuitive approximation of non-linear dynamics based on a full cubic polynomial formulation of the inter-particle force. This formulation is a non-physical extension of the well known St Venant Kirchhoff force, but focuses more on practical considerations about the behavior and the control over the model. The proposed method can be employed by virtually any dynamic model that is based on particle systems, facilitating their simplicity and the respective performance benefits, while it also demonstrates resistance and robustness to high compression. In addition, the presented force model can be easily parameterized for different application scenarios due to its intuitive nature and its direct relation to spring models. We present experimental simulations that demonstrate the scalability and robustness of the proposed method, while retaining performance comparable to simple mass-spring systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH 1998, pp. 43–54 (1998)
Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (SIGGRAPH 2005) 24(3), 982–990 (2005)
Bradley, D., Popa, T., Sheffer, A., Heidrich, W., Boubekeur, T.: Markerless garment capture. ACM Trans. Graph. 27(3), 1–9 (2008)
Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: SIGGRAPH 1994, pp. 365–372 (1994)
Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: SCA 2003: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 28–36 (2003)
Choi, K.J., Ko, H.S.: Stable but responsive cloth. ACM Trans. Graph. 21(3), 604–611 (2002)
Choi, K.J., Ko, H.S.: Research problems in clothing simulation. Computer-Aided Design 37, 585–592 (2005)
Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., Cani, M.P.: Virtual garments: A fully geometric approach for clothing design. Computer Graphics Forum (Eurographics 2006 Proc.) 25(3) (September 2006)
Delingette, H.: Triangular springs for modeling nonlinear membranes. IEEE Transactions on Visualization and Computer Graphics 14(2), 329–341 (2008)
Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics 12(1), 36–47 (2006)
Etzmuss, O., Gross, J., Strasser, W.: Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Transactions on Visualization and Computer Graphics 9(4), 538–550 (2003)
Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26(3) (2007)
Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 131–140 (2004)
Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving finite element simulations of deformable models. In: SIGGRAPH 2007, p. 13 (2007)
Kikuuwe, R., Tabuchi, H., Yamamoto, M.: An edge-based computationally efficient formulation of saint venant-kirchhoff tetrahedral finite elements. ACM Trans. Graph. 28(1), 1–13 (2009)
Lloyd, B., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics 13(5), 1081–1094 (2007)
Moore, P., Molloy, D.: A survey of computer-based deformable models. In: IMVIP 2007: Proceedings of the International Machine Vision and Image Processing Conference, pp. 55–66 (2007)
Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)
Nealen, A., Mueller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Computer Graphics Forum 25(4), 809–836 (2006)
Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65(5), 305–321 (2003)
Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface 1995, pp. 147–154 (1995)
Schmedding, R., Gissler, M., Teschner, M.: Optimized damping for dynamic simulations. In: Spring Conference on Computer Graphics, Budmerice, Slovakia, pp. 205–212 (2009)
Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. ACM Trans. Graph. 27(3), 1–11 (2008)
Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction. IEEE Transactions on Visualization and Computer Graphics 15(2), 339–350 (2009)
Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: SIGGRAPH 1987, pp. 205–214 (1987)
Volino, P., Faure, F., Magnenat-Thalmann, N.: Simple, yet accurate tensile stiffness. ACM Trans. Graph. 28(4) (2009)
Volino, P., Magnenat-Thalmann, N.: Simple linear bending stiffness in particle systems. In: SCA 2006: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 101–105 (2006)
Volino, P., Thalmann, N.M.: Implementing fast cloth simulation with collision response. In: CGI 2000: Proceedings of the International Conference on Computer Graphics, p. 257 (2000)
Wu, Z., Au, C., Yuen, M.: Mechanical properties of fabric materials for draping simulation. International Journal of Clothing Science and Technology 15(1), 56–68 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vogiannou, A., Moustakas, K., Tzovaras, D., Strintzis, M.G. (2011). Non-linear Particle Systems for Scalable Simulation of Deformable Models. In: Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2010. Communications in Computer and Information Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25382-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-25382-9_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25381-2
Online ISBN: 978-3-642-25382-9
eBook Packages: Computer ScienceComputer Science (R0)