Skip to main content

Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7071))

Included in the following conference series:

Abstract

We present new candidates for quantum-resistant public-key cryptosystems based on the conjectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea in our scheme is that we transmit the images of torsion bases under the isogeny in order to allow the two parties to arrive at a common shared key despite the noncommutativity of the endomorphism ring. Our work is motivated by the recent development of a subexponential-time quantum algorithm for constructing isogenies between ordinary elliptic curves. In the supersingular case, by contrast, the fastest known quantum attack remains exponential, since the noncommutativity of the endomorphism ring means that the approach used in the ordinary case does not apply. We give a precise formulation of the necessary computational assumption along with a discussion of its validity. In addition, we present implementation results showing that our protocols are multiple orders of magnitude faster than previous isogeny-based cryptosystems over ordinary curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bostan, A., Morain, F., Salvy, B., Schost, É.: Fast algorithms for computing isogenies between elliptic curves. Math. Comp. 77(263), 1755–1778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory 1(3), 269–273 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander graphs. Journal of Cryptology 22, 93–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time (2010), http://arxiv.org/abs/1012.4019/

  6. Couveignes, J.: Hard homogeneous spaces (2006), http://eprint.iacr.org/2006/291/

  7. Galbraith, S.: Constructing isogenies between elliptic curves over finite fields. LMS J. Comput. Math. 2, 118–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil Descent Attack. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Galbraith, S., Stolbunov, A.: Improved algorithm for the isogeny problem for ordinary elliptic curves (2011), http://arxiv.org/abs/1105.6331/

  10. Joux, A.: The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 20–32. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Lagarias, J., Odlyzko, A.: Effective versions of the Chebotarev density theorem. In: Proc. Sympos. on Algebraic Number Fields: L-functions and Galois Properties, Univ. Durham, Durham, 1975, pp. 409–464. Academic Press, London (1977)

    Google Scholar 

  12. Montgomery, P.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Petit, C., Lauter, K., Quisquater, J.-J.: Full Cryptanalysis of LPS and Morgenstern Hash Functions. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 263–277. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies (2006), http://eprint.iacr.org/2006/145/

  15. Silverman, J.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1992); Corrected reprint of the 1986 original

    Google Scholar 

  16. Stebila, D., Mosca, M., Lütkenhaus, N.: The Case for Quantum Key Distribution. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds.) QuantumComm 2009. LNICS, vol. 36, pp. 283–296. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Stein, W., et al.: Sage Mathematics Software (Version 4.6.2). The Sage Development Team (2011), http://www.sagemath.org

  18. Stolbunov, A.: Reductionist security arguments for public-key cryptographic schemes based on group action. In: Mjølsnes, S.F. (ed.) Norsk informasjonssikkerhetskonferanse (NISK), pp. 97–109 (2009)

    Google Scholar 

  19. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tani, S.: Claw Finding Algorithms Using Quantum Walk. arXiv:0708.2584 (March 2008)

    Google Scholar 

  21. Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2, 134–144 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Teske, E.: The Pohlig-Hellman method generalized for group structure computation. Journal of Symbolic Computation 27(6), 521–534 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. The PARI Group, Bordeaux. PARI/GP, version 2.4.3 (2008) http://pari.math.u-bordeaux.fr/

  24. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B 273, A238–A241 (1971)

    MATH  Google Scholar 

  25. Zhang, S.: Promised and Distributed Quantum Search. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jao, D., De Feo, L. (2011). Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. In: Yang, BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol 7071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25405-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25405-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25404-8

  • Online ISBN: 978-3-642-25405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics