Abstract
Face analysis from videos can be approached using two different strategies, depending on whether the temporal information is used or not. The most straightforward strategy applies still image based techniques to some selected (or all) frames and then fuses the results over the sequence. In contrast, an emerging strategy consists of encoding both facial structure and dynamics through spatiotemporal representations. To gain insight into the usefulness of facial dynamics, this paper considers two baseline systems and compares static versus spatiotemporal approaches to face analysis from videos. The first approach is based only on static images and uses spatial Local Binary Pattern features as inputs to SVM classifiers, while the second baseline system combines facial appearance and motion through a spatiotemporal representation using Volume LBP features as inputs to SVM classifiers. Preliminary experiments on classifying face patterns into different categories based on gender, identity, age, and ethnicity point out very interesting findings on the role of facial dynamics in face analysis from videos.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE TPAMI 28(12), 2037–2041 (2006)
Bassili, J.: Emotion recognition: The role of facial movement and the relative importance of upper and lower areas of the face. Journal of Personality and Social Psychology 37, 2049–2059 (1979)
CRIM, http://www.crim.ca/
Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Fu, Y., Guo, G., Huang, T.: Age synthesis and estimation via faces: A survey. IEEE TPAMI 32(11), 1955 (2010)
Hadid, A., Pietikäinen, M.: Combining appearance and motion for face and gender recognition from videos. Pattern Recognition 42(11), 2818–2827 (2009)
Hadid, A., Pietikäinen, M., Li, S.Z.: Learning Personal Specific Facial Dynamics for Face Recognition from Videos. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 1–15. Springer, Heidelberg (2007) (in conjunction with ICCV 2007)
Hill, H., Johnston, A.: Categorizing sex and identity from the biological motion of faces. Current Biology 11(11), 880–885 (2001)
Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 46–53 (2000)
Knight, B., Johnston, A.: The role of movement in face recognition. Visual Cognition 4, 265–274 (1997)
Li, B., Chellappa, R.: Face verification through tracking facial features. Journal of the Optical Society of America 18, 2969–2981 (2001)
Li, Y.: Dynamic Face Models: Construction and Applications. Ph.D. thesis, Queen Mary, University of London (2001)
Liu, X., Chen, T.: Video-based face recognition using adaptive hidden markov models. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 340–345 (June 2003)
Matta, F., Saeed, U., Mallauran, C., Dugelay, J.L.: Facial gender recognition using multiple sources of visual information. In: 10th IEEE International Workshop on MultiMedia Signal Processing, MMSP 2008, Cairns, Queensland, Australia, October 8-10 (2008)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24, 971–987 (2002)
O’Toole, A.J., Roark, D.A., Abdi, H.: Recognizing moving faces: A psychological and neural synthesis. Trends in Cognitive Science 6, 261–266 (2002)
Sanderson, C., Paliwal, K.K.: Noise compensation in a person verification system using face and multiple speech feature. Pattern Recognition 36(2), 293–302 (2003)
Zeng, Z.H., Pantic, M., Roisman, G.I., Huang, T.: A survey of affect recognition methods:audio, visual, and spontaneous expressions. PAMI 31(1), 39–58 (2009)
Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE TPAMI 29(6), 915–928 (2007)
Zhou, S., Chellappa, R.: Probabilistic Human Recognition from Video. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 681–697. Springer, Heidelberg (2002)
Zhou, S., Krueger, V., Chellappa, R.: Face recognition from video: A condensation approach. In: IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 221–228 (May 2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hadid, A. (2011). Analyzing Facial Behavioral Features from Videos. In: Salah, A.A., Lepri, B. (eds) Human Behavior Understanding. HBU 2011. Lecture Notes in Computer Science, vol 7065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25446-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-25446-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25445-1
Online ISBN: 978-3-642-25446-8
eBook Packages: Computer ScienceComputer Science (R0)