Abstract
Biometric gait analysis is to acquire biometric information such as identity, gender, ethnicity and age from people walking patterns. In the walking process, the human body shows regular periodic motion, especially upper and lower limbs, which reflects the individual’s unique movement pattern. Compared to other biometrics, gait can be obtained from distance and is difficult to hide and camouflage. During the past ten years, gait has been a hot topic in computer vision with great progress achieved. In this paper, we give a general review and a simple survey of recent gait progresses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. Journal of Bone Join Surgery 46(2), 335–360 (1964)
Murray, M.P.: Gait as a total pattern of movement. American Journal of Physical Medicine 46(1), 290–333 (1967)
Ralston, H.J., Inman, V., Todd, E.: Human walking. Williams and Wilkins (1981)
Johansson, G.: Visual perception of biological motion and a model for its analysis. Perception and Psychophysics 14(2), 201–211 (1977)
Cutting, J.E., Kozlowski, L.T.: Recognizing friends by their walk: gait perception without familiarity cues. Bulletin of the Psychonomic Society 9(5), 353–356 (1977)
van Doornikc, J., Sinkjaer, T.: Robotic platform for human gait analysis. IEEE Trans. Biomed. Eng. 54(9), 1696–1702 (2007)
Lee, S.W., Mase, K., Kogure, K.: Detection of spatio-temporal gait parameters by using wearable motion sensors. In: Proc. IEEE Conf. on Eng. Med. Biol. Soc., pp. 6836–6839 (2005)
Vanitchatchavan, P.: Patterns of joint angles during termination of human gait. In: Proc. IEEE Conf. on Syst., Man, Cybern., pp. 1226–1230 (2000)
Barclay, C.D., Cutting, J.E., Kozlowski, L.T.: Temporal and spatial factors in gait perception that influence gender recognition. Perception and Psychophysics 23(2), 145–152 (1978)
Cutting, J.E., Proffitt, D.R., Kozlowski, L.T.: A biochemical invariant for gait perception. Journal of Experimental Psychology: Human Perception and Performance 4, 357–372 (1978)
Field, M., Stirling, D., Naghdy, F., Pan, Z.: Mixture model segmentation for gait recognition. In: ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, pp. 3–8 (2008)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Proc. IEEE/IAPR Int. Conf. Pattern Recog., vol. 4, pp. 441–444 (2006)
Gross, R., Shi, J.: The cmu motion of body (mobo) database. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-01-18 (June 2001)
Shutler, J.D., Grant, M.G., Nixon, M.S., Carter, J.N.: On a large sequence-based human gait database. In: Proc. Int. Conf. Recent Advances Soft Comput., pp. 66–72 (2002)
Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The human id gait challenge problem: Data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)
Zhang, D., Wang, Y.: Investigating the separability of features from different views for gait based gender classification. In: Proc. IEEE/IAPR Int. Conf. Pattern Recog., pp. 1–4 (2008)
Ran, Y., Weiss, I., Zheng, Q., Davis, L.S.: Pedestrian detection via periodic motion analysis. Int. J. Comput. Vis. 2(71), 143–160 (2007)
Jean, F., Albu, A.B., Bergevin, R.: Towards view-invariant gait modeling: Computing view-normalized body part trajectories. Pattern Recog. 42(11), 2936–2949 (2009)
Gu, J., Ding, X., Wang, S., Wu, Y.: Action and gait recognition from recovered 3-d human joints. IEEE Trans. Syst., Man, Cybern. B 40(4), 1021–1033 (2010)
Boulgouris, N.V., Chi, Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Trans. Image Process. 16(3), 857–860 (2007)
Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Trans. Image Process. 18(8), 1905–1910 (2009)
Hu, M., Wang, Y., Zhang, Z., Wang, Y.: Combining spatial and temporal information for gait based gender classification. In: Proc. IEEE/IAPR Int. Conf. Pattern Recog., pp. 3679–3682 (August 2010)
Venkat, I., DeWilde, P.: Robust gait recognition by learning and exploiting sub-gait characteristics. Int. J. Comput. Vis. 91(1), 7–23 (2011)
Kwon, K.S., Park, S.H., Kim, E.Y., Kim, H.J.: Human shape tracking for gait recognition using active contours with mean shift. In: Proc. Int. Conf. Human-Comput. Interaction, pp. 690–699 (2007)
Bashir, K., Xiang, T., Gong, S.: Gait representation using flow fields. In: Proc. British Mach. Vis. Conf. (2009)
Ho, M.-F., Chen, K.-Z., Huang, C.-L.: Gait analysis for human walking paths and identities recognition. In: Proc. Int. Conf. Multimedia Expo., pp. 1054–1057 (2009)
Chen, C., Zhang, J., Fleischer, R.: Distance approximating dimension reduction of riemannian manifolds. IEEE Trans. Syst., Man, Cybern. B 40(1), 208–217 (2010)
Kellokumpu, V., Zhao, G., Li, S.Z., Pietikainen, M.: Dynamic texture based gait recognition. In: Proc. IAPR/IEEE Int. Conf. Biometrics, pp. 1000–1009 (2009)
Ran, Y., Zheng, Q., Chellappa, R., Strat, T.M.: Applications of a simple characterization of human gait in surveillance. IEEE Trans. Syst., Man, Cybern. B 40(4), 1009–1020 (2010)
Bissacco, A., Soatto, S.: Hybrid dynamical models of human motion for the recognition of human gaits. Int. J. Comput. Vis. 85(1), 101–114 (2009)
Zhang, X., Fan, G.: Dual gait generative models for human motion estimation from a single camera. IEEE Trans. Syst., Man, Cybern. B 40(4), 1034–1049 (2010)
Trivinoa, G., Alvarez-Alvareza, A., Bailadorb, G.: Application of the computational theory of perceptions to human gait pattern recognition. Pattern Recog. 43(7), 2572–2581 (2010)
Hu, M., Wang, Y., Zhang, Z., Zhang, D.: Multi-view multi-stance gait identification. In: Proc. IEEE Int. Conf. Image Process. (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Z., Hu, M., Wang, Y. (2011). A Survey of Advances in Biometric Gait Recognition. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, vol 7098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25449-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-25449-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25448-2
Online ISBN: 978-3-642-25449-9
eBook Packages: Computer ScienceComputer Science (R0)