Skip to main content

Significance of Dynamic Content of Gait Present in the Lower Silhouette Region

  • Conference paper
Biometric Recognition (CCBR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7098))

Included in the following conference series:

  • 1559 Accesses

Abstract

In the present scenario, Gait descriptors are required to extract the dynamic and static information of the gait. The static and dynamic descriptors are formed from the entire region of the body. We know that majority of dynamic information is in the lower silhouette whereas majority of static information is in the upper silhouette. In our work we have evaluated the significance of dynamic information extracted from the lower silhouette. State of the art feature descriptors are used along with a feature selection mask to form the final signature templates for classification. Our results indicate a significant dynamic content in the lower silhouette which itself is able to give decent recognition rate. Future work can improve performance by using dynamic information from lower silhouette in conjunction with static information derived from upper silhouette.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Crime Detection and Prevention (ICDP 2009), pp. 1–6. IET (2009)

    Google Scholar 

  2. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation (2010)

    Google Scholar 

  3. Bashir, K., Xiang, T., Gong, S., Mary, Q.: Gait representation using flow fields. In: British Machine Vision Conference (2009)

    Google Scholar 

  4. BenAbdelkader, C., Cutler, R.G., Davis, L.S.: Gait recognition using image self-similarity. Journal on Applied Signal Processing, 572–585 (2004)

    Google Scholar 

  5. Foster, J.P., Nixon, M.S., Prugel-Bennett, A.: Automatic gait recognition using area-based metrics. Pattern Recognition Letters 24(14), 2489–2497 (2003)

    Article  MATH  Google Scholar 

  6. Guo, B., Nixon, M.S.: Gait feature subset selection by mutual information. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(1), 36–46 (2009)

    Article  Google Scholar 

  7. Hayfron-Acquah, J.B., Nixon, M.S., Carter, J.N.: Automatic gait recognition by symmetry analysis. Pattern Recognition Letters 24(13), 2175–2183 (2003)

    Article  MATH  Google Scholar 

  8. Johansson, G.: Visual perception of biological motion and a model for its analysis. Attention, Perception, & Psychophysics 14(2), 201–211 (1973)

    Article  Google Scholar 

  9. Kellokumpu, V., Zhao, G., Li, S., Pietikäinen, M.: Dynamic texture based gait recognition. Advances in Biometrics, 1000–1009 (2009)

    Google Scholar 

  10. Kobayashi, T., Otsu, N.: Action and Simultaneous Multiple-Person Identification Using Cubic Higher-Order Local Auto-Correlation. In: International Conference on Pattern Recognition, vol. 4, pp. 741–744 (2004)

    Google Scholar 

  11. Lee, S., Liu, Y., Collins, R.: Shape variation-based frieze pattern for robust gait recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  12. Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: Averaged silhouette. Pattern Recognition 4, 211–214 (2004)

    Article  Google Scholar 

  13. Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: The gait identification challenge problem: Data sets and baseline algorithm. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 1, pp. 385–388. IEEE (2002)

    Google Scholar 

  14. Polana, R., Nelson, R.C.: Detection and Recognition of Periodic, Nonrigid Motion. International Journal of Computer Vision 23, 261–282 (1997)

    Article  Google Scholar 

  15. Shutler, J., Grant, M., Nixon, M.S., Carter, J.N.: On a Large Sequence-Based Human Gait Database (2002)

    Google Scholar 

  16. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1700–1715 (2007)

    Google Scholar 

  17. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. Pattern Recognition 4, 441–444 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saxena, S. (2011). Significance of Dynamic Content of Gait Present in the Lower Silhouette Region. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, vol 7098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25449-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25449-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25448-2

  • Online ISBN: 978-3-642-25449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics