Skip to main content

Sub-band Main Peak Frequency Application for Speaker Identification

  • Conference paper
Biometric Recognition (CCBR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7098))

Included in the following conference series:

  • 1588 Accesses

Abstract

The paper proposes the sub-band main peak frequencies( SMPF) for speaker identification (SI). The SMPF could be derived from the sub-band first formant frequencies by all-pole model of speech signal. Compared with MFCC features for SI based on a Gaussian mixture model (GMM), only SMPF features for SI is better than only the MFCC, with one of improved relative rate up to 15%. Experimental utterances are Chinese mandarin under clean background recording circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reynolds, D.A., Rose, R.C.: Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models. IEEE Transactions Speech Audio Processing 3(1), 72–83 (1995)

    Article  Google Scholar 

  2. Parham, A., Guangji, S., Maryam, M.S., Seyed, A.B.: Phase-based Speech Processing. World Scientific, USA (2006)

    Google Scholar 

  3. Kuldip, K.P., Leigh, D.A.: On the Usefulness of STFT phase spectrum in human listening test. Speech Communication 45, 153–170 (2005)

    Article  Google Scholar 

  4. Leigh, D.A., Kuldip, K.P.: Iterative reconstruction of speech from short-time Fourier transform phase and magnitude spectra. Computer Speech and Language 21(1), 174–186 (2007)

    Article  Google Scholar 

  5. Leigh, D.A., Kuldip, K.P.: Short-time phase spectrum in speech processing: A review and some experimental results. Digital Signal Processing: A Review Journal 17(3), 578–616 (2007)

    Article  Google Scholar 

  6. Vibha, T., Jyoti, S.: AM-FM Features and Their Application to Noise Robust Speech Recognition: A Review. The IUP Journal of Telecommunications 2(1), 7–19 (2010)

    Google Scholar 

  7. Limin, H., Juanmin, X.: A New Approach to Extract Formant Instantaneous Characteristics for Speaker Identification. International Journal of Computer Information System and Management Applications 1, 295–302 (2009)

    Google Scholar 

  8. Limin, H., Juanmin, X.: Compensating function of Formant Instantaneous Characteristics in Speaker Identification. In: Fifth International Conference on Information Assurance and Security, IAS 2009, pp. 744–750 (2009)

    Google Scholar 

  9. Limin, H., Xiaoning, H., Juanmin, X.: Formant Instantaneous Characteristics application to Speech Recognition and Speaker Identification. Journal of Shanghai University 15(2), 123–127 (2011)

    Article  Google Scholar 

  10. Marco, G., Fred, C.: Speaker Identification Using Instantaneous Frequencies. IEEE Trans. Speech and Language Processing 16(6), 1097–1111 (2008)

    Article  Google Scholar 

  11. Thiruvaran, T., Ambikairajah, E., Epps, J.: Extraction of FM components from speech signals using all-pole model. Electronics Letters 44(6), 449–450 (2008)

    Article  Google Scholar 

  12. Thiruvaran, T., Nosratighods, M., Ambikairajah, E., Epps, J.: Computationally efficient frame-averaged FM feature extraction for speaker recognition. Electronics Letters 45(6), 335–337 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hou, L., Xie, J., Xie, S. (2011). Sub-band Main Peak Frequency Application for Speaker Identification. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, vol 7098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25449-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25449-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25448-2

  • Online ISBN: 978-3-642-25449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics