Skip to main content

Color Face Recognition Based on Statistically Orthogonal Analysis of Projection Transforms

  • Conference paper
Biometric Recognition (CCBR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7098))

Included in the following conference series:

Abstract

In this paper, we propose a novel color face feature extraction approach named statistically orthogonal analysis (SOA). It in turn calculates the projection transforms of the red, green and blue color component image sets by using the Fisher criterion, and simultaneously makes the obtained transforms mutually statistically orthogonal. SOA can enhance the complementation and remove the correlation between discriminant features separately extracted from three color component image sets. Experimental results on the AR and FRGC version 2 color face image databases demonstrate that SOA achieves better recognition results than several related color face recognition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rajapakse, M., Tan, J., Rajapakse, J.: Color Channel Encoding with NMF for Face Recognition. In: Int. Conf. Image Processing, vol. 3, pp. 2007–2010 (2004)

    Google Scholar 

  2. Shih, P., Liu, C.: Improving The Face Recognition Grand Challenge Baseline Performance Using Color Configurations across Color Spaces. In: Int. Conf. Image Processing, pp. 1001–1004 (2006)

    Google Scholar 

  3. Liu, C., Wechsler, H.: Robust Coding Schemes for Indexing and Retrieval from Large Face Databases. IEEE Trans. Image Processing 9(1), 132–137 (2000)

    Article  Google Scholar 

  4. Yang, J., Liu, C.: Color Image Discriminant Models and Algorithms for Face Recognition. IEEE Trans. Neural Network 19(12), 2088–2098 (2008)

    Article  MathSciNet  Google Scholar 

  5. Liu, C.: Learning The Uncorrelated, Independent, and Discriminating Color Spaces for Face Recognition. IEEE Trans. Information Forensics and Security 3(2), 213–222 (2008)

    Article  Google Scholar 

  6. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)

    Article  Google Scholar 

  7. Foley, D.H., Sammon, J.W.: An Optimal Set of Discriminant Vectors. IEEE Trans. Computer 24(3), 281–289 (1975)

    Article  MATH  Google Scholar 

  8. Yu, H., Yang, J.: A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition. Pattern Recognition 34(10), 2067–2070 (2001)

    Article  MATH  Google Scholar 

  9. Jing, X.Y., Zhang, D., Jin, Z.: UODV: Improved Algorithm and Generalized Theory. Pattern Recognition 36(11), 2593–2602 (2003)

    Article  MATH  Google Scholar 

  10. Zhang, Y., Yeung, D.Y.: Semi-supervised Discriminant Analysis Using Robust Path-based Similarity. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  11. Zheng, W.S., Lai, J.H., Yuen, P.C., Li, S.Z.: Perturbation LDA: Learning The Difference between The Class Empirical Mean and Its Expectation. Pattern Recognition 42(5), 764–779 (2009)

    Article  MATH  Google Scholar 

  12. Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report #24 (1998)

    Google Scholar 

  13. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of The Face Recognition Grand Challenge. In: IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 947–954 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Man, J., Jing, X., Liu, Q., Yao, Y., Li, K., Yang, J. (2011). Color Face Recognition Based on Statistically Orthogonal Analysis of Projection Transforms. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, vol 7098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25449-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25449-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25448-2

  • Online ISBN: 978-3-642-25449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics