Abstract
We present a novel dataglove mapping technique based on parameterisable models that handle both the cross coupled sensors of the fingers and thumb, and the under-specified abduction sensors for the fingers. Our focus is on realistically reproducing the posture of the hand as a whole, rather than on accurate fingertip positions. The method proposed in this paper is a vision-free, object free, data glove mapping and calibration method that has been successfully used in robot manipulation tasks.
The authors would like to acknowledge support from the German Collaborative Research Centre “SFB 673 - Alignment in Communication” granted by the DFG, and the German Center of Excellence 277 “Cognitive Interaction Technology” (CITEC).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chang, L., Pollard, N., Mitchell, T., Xing, E.: Feature Selection for Grasp Recognition from Optical Markers. In: Proc. Int. Conf on Intelligent Robots and Systems, IROS (2007)
Chou, T.-S., Gadd, A., Knott, D.: Hand-Eye: A Vision-Based Approach to Data Glove Calibration. In: Proc. Human Interface Technologies (2000)
Fischer, M., van der Smagt, P., Hirzinger, G.: Learning techniques in a dataglove based telemanipulation system for the dlr hand. In: ICRA (1998)
Griffin, W., Findley, R., Turner, M., Cutkosky, M.: Calibration and Mapping of a Human Hand for Dexterous Telemanipulation. In: Proc. ASME Int. Mechanical Engineering Congress & Exposition (IMECE), Haptic Interfaces for Virtual Environments and Teleoperator Systems Symposium (2000)
Hollister, A., Buford, W.L., Myers, L.M., Giurintano, D.J., Novick, A.: The axes of rotation of the thumb carpometacarpal joint. Journal of Orthopaedic Research 10(3), 454–460 (1992)
Hollister, A., Giurintano, D.J., Buford, W.L., Myers, L.M., Novick, A.: The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clinical Orthopaedics & Related Research (320), 188–193 (November 1995)
Kahlesz, F., Zachmann, G., Klein, R.: Visual-fidelity dataglove calibration. In: Proc. Computer Graphics International, CGI (2004)
Maycock, J., Donrbusch, D., Elbrechter, C., Haschke, R., Schack, T., Ritter, H.: Approaching manual intelligence. In: KI-Künstliche Intelligenz - Issue Cognition for Technical Systems, pp. 1–8 (2010)
Maycock, J., Steffen, J., Haschke, R., Ritter, H.: Robust tracking of human hand postures for robot teaching. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2011)
Steffen, J.: Structured Manifolds for Motion Production and Segmentation - A Structured Kernel Regression Approach. Phd thesis, Neuroinformatics Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany (2010)
Steffen, J., Elbrechter, C., Haschke, R., Ritter, H.J.: Bio-inspired motion strategies for a bimanual manipulation task. In: Humanoids (2010)
Supuk, T., Kodek, T., Bajd, T.: Estimation of hand preshaping during human grasping. Medical Engineering & Physics 27(9), 790–797 (2005)
Turner, M.: Programming Dexterous Manipulation by Demonstration. PhD Thesis, Stanford University, Department of Mechanical Engineering, Stanford, USA (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Steffen, J., Maycock, J., Ritter, H. (2011). Robust Dataglove Mapping for Recording Human Hand Postures. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-25489-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25488-8
Online ISBN: 978-3-642-25489-5
eBook Packages: Computer ScienceComputer Science (R0)