Skip to main content

Assessing Respondent-Driven Sampling in the Estimation of the Prevalence of Sexually Transmitted Infections (STIs) in Populations Structured in Complex Networks

  • Conference paper
Complex Networks

Abstract

When a sampling frame for a given population cannot be defined, either because it requires expensive/time-consuming procedures or because it targets a stigmatized or illegal behavior that may compromise the identification of potential interviewees, traditional sampling methods cannot be used. Examples include “hidden populations” of special relevance for public health, such as men who have sex with men (MSM), sex workers and drug users. Since the late 1990s, a network-based method, called Respondent-Driven Sampling (RDS) has been used to assess such “hidden populations”.This paper simulates data from hidden populations, in order to assess the performance of prevalence estimators in different scenarios built after different combinations of social network structures and disease spreading patterns. The simulation models were parameterized using empirical data from a previous RDS study conducted on Brazilian MSM. Overall, RDS performed well, showing it is a valid strategy to assess hidden populations. However, the proper analysis of underlying network structures and patterns of disease spread should be emphasized as a source of potential estimate biases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baral, S., Sifakis, F., Cleghorn, F., Beyrer, C.: Elevated risk for hiv infection among men who have sex with men in low- and middle-income countries 2000-2006: a systematic review. PLoS Med. 4(12), 339 (2007), http://dx.doi.org/10.1371/journal.pmed.0040339 , doi:10.1371/journal.pmed.0040339

    Article  Google Scholar 

  2. Boily, M.C., Bastos, F.I., Desai, K., Chesson, H., Aral, S.: Increasing prevalence of male homosexual partnerships and practices in britain 1990-2000: but why? AIDS 19(3), 352–4; author reply 354–5 (2005)

    Google Scholar 

  3. Gile, K.J., Handcock, M.S.: Respondent-driven sampling:: an assessment of current methodology. Sociological Methodology, 1467–9531 (2010)

    Google Scholar 

  4. Goel, S., Salganik, M.J.: Assessing respondent-driven sampling. Proc. Natl. Acad. Sci. USA 107(15), 6743–6747 (2010), http://dx.doi.org/10.1073/pnas.1000261107 , doi:10.1073/pnas.1000261107

    Article  Google Scholar 

  5. Heckathorn, D.: Respondent-driven sampling: a new approach to the study of hidden populations. Social Problems 44, 174–199 (1997)

    Article  Google Scholar 

  6. Heckathorn, D.: Respondent-driven sampling ii: deriving valid population estimates from chain-referral samples of hideen populations. Social Problems 49, 11–34 (2002)

    Google Scholar 

  7. Hosmer, D., Lemeshow, S.: Applied Logistic Regression. Jonh Wiley & Sons, Chichester (2000)

    Book  MATH  Google Scholar 

  8. Malekinejad, M., Johnston, L.G., Kendall, C., Kerr, L.R.F.S., Rifkin, M.R., Rutherford, G.W.: Using respondent-driven sampling methodology for hiv biological and behavioral surveillance in international settings: a systematic review. AIDS Behav. 12(4 Suppl.), S105–S130 (2008), http://dx.doi.org/10.1007/s10461-008-9421-1

    Article  Google Scholar 

  9. Malta, M., Magnanini, M.M.F., Mello, M.B., Pascom, A.R.P., Linhares, Y., Bastos, F.I.: Hiv prevalence among female sex workers, drug users and men who have sex with men in brazil: a systematic review and meta-analysis. BMC Public Health 10, 317 (2010), http://dx.doi.org/10.1186/1471-2458-10-317 , doi:10.1186/1471-2458-10-317

    Article  Google Scholar 

  10. Mello, M., A, A.P., M, M.C., Tun, W., Júnior, A.B., Ilário, M., Reis, P., Salles, R., Westman, S., Díaz: Assessment of risk factors for hiv infection among men who have sex with men in the metropolitan area of campinas city, brazil, using respondent-driven sampling. Tech. rep., Population Council (2008)

    Google Scholar 

  11. Morris, M.: Network Epidemiology: A handbook for survey design and data collection. Okford University (2004)

    Google Scholar 

  12. Poon, A.F.Y., Brouwer, K.C., Strathdee, S.A., Firestone-Cruz, M., Lozada, R.M., Pond, S.L.K., Heckathorn, D.D., Frost, S.D.W.: Parsing social network survey data from hidden populations using stochastic context-free grammars. PLoS One 4(9), e6777 (2009), http://dx.doi.org/10.1371/journal.pone.0006777 , doi:10.1371/journal.pone.0006777

    Article  Google Scholar 

  13. Romano, C.M., de Carvalho-Mello, I.M.V.G., Jamal, L.F., de Melo, F.L., Iamarino, A., Motoki, M., Pinho, J.R.R., Holmes, E.C., de Andrade Zanotto, P.M., V. G. D. N. Consortium: Social networks shape the transmission dynamics of hepatitis c virus. PLoS One 5(6), e11,170 (2010), http://dx.doi.org/10.1371/journal.pone.0011170 , doi:10.1371/journal.pone.0011170

    Article  Google Scholar 

  14. Salganik, M., Heckathorn, D.: Sampling and estimation in hidden populations using respondent-driven sampling. Sociological Methodology 34, 193–239 (2004)

    Article  Google Scholar 

  15. Salganik, M.J.: Variance estimation, design effects, and sample size calculations for respondent-driven sampling. J. Urban Health 83(6 suppl), 98–112 (2006), http://dx.doi.org/10.1007/s11524-006-9106-x , doi:10.1007/s11524-006-9106-x

    Article  Google Scholar 

  16. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing (2008)

    Google Scholar 

  17. Volz, E., Heckathorn, D.: Probability based estimation theory for respondent-driven sampling. Journal of Official Statistics 24, 79–97 (2008)

    Google Scholar 

  18. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001), http://dx.doi.org/10.1038/35065725 , doi:10.1038/35065725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albuquerque, E.M., Codeço, C.T., Bastos, F.I. (2011). Assessing Respondent-Driven Sampling in the Estimation of the Prevalence of Sexually Transmitted Infections (STIs) in Populations Structured in Complex Networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics