Skip to main content

Communities Unfolding in Multislice Networks

  • Conference paper
Complex Networks

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 116))

Abstract

Discovering communities in complex networks helps to understand the behaviour of the network. Some works in this promising research area exist, but communities uncovering in time-dependent and/or multiplex networks has not deeply investigated yet. In this paper, we propose a communities detection approach for multislice networks based on modularity optimization. We first present a method to reduce the network size that still preserves modularity. Then we introduce an algorithm that approximates modularity optimization (as usually adopted) for multislice networks, thus finding communities. The network size reduction allows us to maintain acceptable performances without affecting the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arenas, A., Duch, J., Fernandez, A., Gomez, S.: Size reduction of complex networks preserving modularity. New Journal of Physics 9, 176 (2007)

    Article  MathSciNet  Google Scholar 

  2. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 913–921. ACM, New York (2007)

    Google Scholar 

  3. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment (10), 10008 (2008)

    Google Scholar 

  4. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineering 20(2), 172–188 (2008)

    Article  MATH  Google Scholar 

  5. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 554–560. ACM, New York (2006)

    Google Scholar 

  6. Fenn, D.J., Porter, M.A., McDonald, M., Williams, S., Johnson, N.F., Jones, N.S.: Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007-2008 credit crisis. Chaos 19(3), 033119–+ (2009)

    Article  Google Scholar 

  7. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  8. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101, 5249–5253 (April 2004)

    Google Scholar 

  10. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 611–617. ACM, New York (2006)

    Google Scholar 

  11. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  12. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  13. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  16. Palla, G., Barabsi, A.L., Vicsek, T., Hungary, B.: Quantifying social group evolution. Nature 446 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G. (2011). Communities Unfolding in Multislice Networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics