Skip to main content

Connectivity Criteria for Ranking Network Nodes

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 116))

Abstract

In this work we introduce a new quantitative criteria for assessing the connectivity of nodes based on the well known concept of edge-connectivity. We call the new criteria the connectivity numbers of a node. They consist of a hierarchy of measures that starts with a local measure that progressively becomes a global connectivity measure of the network. We show that the connectivity numbers can be computed in polynomial time. Experimental results are described showing how the proposed approach compares to other well known concepts involving connectivity and centrality of network nodes in real and synthetic networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Han, J., Watson, D., Jahanian, F.: An Experimental Study of Internet Path Diversity. IEEE Transactions on Dependable and Secure Computing 3(4) (2006)

    Google Scholar 

  2. Apostolopoulos, J.G., Trott, M.D.: Path Diversity for Enhanced Media Streaming. IEEE Communications Magazine 42(8) (2004)

    Google Scholar 

  3. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Network Topology Generators: Degree-Based vs. Structural. ACM SIGCOMM Computer Communication Review 32(4) (2002)

    Google Scholar 

  4. Shavitt, Y., Singer, Y.: Beyond Centrality - Classifying Topological Significance using Backup Efficiency and Alternative Paths. New Journal of Physics, Focus Issue: Complex Networked Systems: Theory and Applications (2007)

    Google Scholar 

  5. Wuchty, S., Stadler, P.F.: Centers of Complex Networks. Journal of Theoretical Biology 223(1) (2003)

    Google Scholar 

  6. Palmer, C.R., Siganos, G., Faloutsos, M., Faloutsos, C., Gibbons, P.: The Connectivity and Fault-Tolerance of the Internet Topology. In: Proc. Workshop on Network-Related Data Management (2001)

    Google Scholar 

  7. Duarte Jr., E.P., Santini, R., Cohen, J.: Delivering Packets During the Routing Convergence Latency Interval through Highly Connected Detours. In: Proc. IEEE Int’l Conf. Dependable Systems and Networks (2004)

    Google Scholar 

  8. da, L., Costa, F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 167–242 (2007)

    Article  Google Scholar 

  9. Brandes, U., Erlebach, T. (eds.): Network Analysis: Methodological Foundations. Lecture Notes in Computer Science / Theoretical Computer Science and General Issues. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  10. Gomory, R.E., Hu, T.C.: Multi-Terminal Network Flows. SIAM Journal on Applied Mathematics 9 (1961)

    Google Scholar 

  11. Gusfield, D.: Very Simple Method for All Pairs Network Flow Analysis. SIAM Journal on Computing 19(1) (1990)

    Google Scholar 

  12. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  13. Hariharan, R., Kavitha, T., Panigrahi, D., Bhalgat, A.: An (mn) Gomory-Hu Tree Construction Algorithm for Unweighted Graphs. In: Proc. 39th Annual ACM Symposium on Theory of Computing, STOC (2007)

    Google Scholar 

  14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (ACM TKDD) 1(1) (2007)

    Google Scholar 

  15. Batagelj, V., Mrvar, A.: Pajek datasets (2006)

    Google Scholar 

  16. Watts, D.J., Strogatz, S.H.: “Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  17. Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research 31(9) (2003)

    Google Scholar 

  18. Bu, T., Towsley, D.F.: On Distinguishing between Internet Power Law Topology Generators. In: Proc. IEEE INFOCOM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, J., Duarte, E.P., Schroeder, J. (2011). Connectivity Criteria for Ranking Network Nodes. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics