Skip to main content

Modified A* Algorithm for Mobile Robot Path Planning

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 395))

Abstract

Robot path planning is about finding a collision free motion from one position to another. Efficient algorithms for solving problems of this type have important applications in areas such as: industrial robotics, computer animation, drug design, and automated surveillance. In this paper, a modified A* algorithm is used for optimizing the path. Different from the approaches that only choose the shortest routes, this method estimates the energy consumption and chooses the most energy efficient routes. As mobile robots are powered by batteries, their energy is limited. Therefore, how to minimize energy consumption is an important problem. The basic idea is to minimize unnecessary stops and turns for mobile robots that cause acceleration and deceleration and consumes significant energy. Simulation results are presented on various environments with different levels of complexity depending on the density of the obstacles. The effectiveness of the proposed approach is evaluated in terms of number of movement steps, path length, energy consumption, number of turns and time. The experimental results show that our approach can provide effective path by reducing the number of turns compared to A*, thus saving energy. All paths generated were optimal in terms of length and smoothness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hutchinson, S.A., Kak, A.C.: Planning sensing strategies in a robot work cell with Multi-sensor capabilities. IEEE Trans. on Robotics and Automation 5(6) (1989)

    Google Scholar 

  2. Rich, E., Knight, K.: Artificial Intelligence, pp. 29–98. McGraw- Hill, New York (1991)

    Google Scholar 

  3. Takahashi, O., Schilling, R.J.: Motion planning in a plane using generalized voronoi diagrams. IEEE Trans. On Robotics and Automation 5(2) (1989)

    Google Scholar 

  4. Borenstain, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A. K. Peters, Wellesley (1996)

    Google Scholar 

  5. Matlin, W.M.: Cognition, Hault Sounders, printed and circulated. Prism books, India (1996)

    Google Scholar 

  6. Konar, A., Pal, S.: Modeling cognition with fuzzy neural nets. In: Leondes, C.T. (ed.) Fuzzy Systems Theory: Techniques and Applications. Academic Press, New York (1999)

    Google Scholar 

  7. Pagac, D., Nebot, E.M., Durrant, W.H.: An evidential approach to map building for autonomous robots. IEEE Trans. On Robotics and Automation 14(2), 623–629 (1998)

    Article  Google Scholar 

  8. Lumelsky, V.J., Skewis, T.: A paradigm for incorporating vision in the robot navigation function. In: Proc. of IEEE Int. Conf. on Robotic Automation, pp. 734–739. Institute of Electrical and Electronics Engineers, New York (1988)

    Google Scholar 

  9. Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automation moving amidst unknown obstacles of arbitrary shape. Algorithmica 2(4), 403–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lumelsky, V.J., Tiwari, S.: An algorithm for maze searching with azimuth input. In: Proc. IEEE Int. Conf. on Robotic Automation, pp. 111–116. Institute of Electrical and Electronics Engineers, New York (1994)

    Google Scholar 

  11. Lee, S., Adams, T.M., Byoo, B.: A fuzzy navigation system for mobile construction robot. Autom. Constr. 6(2), 97–107 (1997)

    Article  Google Scholar 

  12. Lee, S.: Spatial model and decentralized path planning for construction automation. PhD thesis, University of Wisconsin–Madison, Madison, Wis. (2000)

    Google Scholar 

  13. Kamon, I., Rivlin, E.: Sensory-based motion planning with global proofs. IEEE Trans. Rob. Autom. 13(6), 812–814 (1997)

    Article  Google Scholar 

  14. Ayala-Ramirez, V., Perez-Garcia, A., Montecillo- Puente, E.J., Sanchez-Yanez, R.E.: Path planning using genetic algorithms for mini-robotic tasks. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (2004)

    Google Scholar 

  15. Manikas, T.W., Ashenayi, K., Wainwright, R.L.: Genetic Algorithms for Autonomous Robot Navigation. IEEE Instrumentation & Measurement Magazine (December 2007)

    Google Scholar 

  16. Du, X., Chen, H.-H., Gu, W.-K.: Neural network and genetic algorithm based global path planning in a static environment. Journal of Zhejiang University Science 6A(6), 549–554 (2005)

    Article  Google Scholar 

  17. Behnke, S.: Local Multiresolution Path Planning. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 332–343. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Mahmoudi, S.E., Bitaghsir, A.A., Forouzandeh, B., Marandi, A.R.: A New Genetic Method for Mobile Robot Navigation. In: 10th IEEE International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, August 30 - September 2 (2004)

    Google Scholar 

  19. Na, Y.-K., Oh, S.-Y.: Hybrid Control for Autonomous Mobile Robot Navigation Using Neural Network Based Behavior Modules and Environment Classification. Autonomous Robots 15(2), 193–206

    Google Scholar 

  20. Shukla, A., Tiwari, R., Kala, R.: Real Life Applications of Soft Computing, May 21. CRC Press Taylor & Fransis Group (2010)

    Google Scholar 

  21. Rahul, K., et al.: Mobile Robot Navigation Control in Moving Obstacle Environment using Genetic Algorithm, Artificial Neural Networks and A* Algorithm. In: Proceedings of the IEEE World Congress on Computer Science and Information Engineering (CSIE 2009), IEEE Explore, Los Angeles/Anaheim, USA, pp. 705–713 (April 2009)

    Google Scholar 

  22. Rahul, K., Anupam, S., Ritu, T.: Robotic Path Planning using Multi Neuron Heuristic Search. In: Proceedings of the ACM 2009 International Conference on Computer Sciences and Convergence Information Technology, ICCIT 2009, Seoul, Korea, pp. 1318–1323

    Google Scholar 

  23. Rahul, K., Anupam, S., Ritu, T.: Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artificial Intelligence Review 33(4), 275–306 (2010)

    Article  Google Scholar 

  24. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4(2), 100–107 (1968)

    Article  Google Scholar 

  25. Liu, G., et al.: The Ant Algorithm for Solving Robot Path Planning Problem. In: Third International Conference on Information Technology and Applications (ICITA), pp. 25–27 (2005)

    Google Scholar 

  26. Frazzoli, E., et al.: Real-Time Motion Planning for Agile Autonomous Vehicles. Journal of Guidance, Control and Dynamics 25(1) (January–February 2002)

    Google Scholar 

  27. Liang, Y., Xu, L.: Global path planning for mobile robot based genetic algorithm and modified simulated annealing algorithm. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 303–308 (2009)

    Google Scholar 

  28. Dai, S., et al.: Path Planning for Mobile Robot Based On Rough Set Genetic Algorithm. In: Second International Conference on Intelligent Networks and Intelligent Systems, pp. 278–281 (2009)

    Google Scholar 

  29. Masehian, E., Sedighizadeh, D.: A multi-objective PSO-based algorithm for robot path planning. In: 2010 IEEE International Conference on Industrial Technology (ICIT), pp. 465–470 (2010)

    Google Scholar 

  30. Kim, S.-H., et al.: New Potential Functions for Multi robot path planning: SWARM or SPREAD. In: 2nd International Conference on Computer and Automation Engineering (ICCAE), pp. 557–561 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshika Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pal, A., Tiwari, R., Shukla, A. (2012). Modified A* Algorithm for Mobile Robot Path Planning. In: Patnaik, S., Yang, YM. (eds) Soft Computing Techniques in Vision Science. Studies in Computational Intelligence, vol 395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25507-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25507-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25506-9

  • Online ISBN: 978-3-642-25507-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics