Skip to main content

On Constructing Homomorphic Encryption Schemes from Coding Theory

  • Conference paper
Cryptography and Coding (IMACC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7089))

Included in the following conference series:

  • 1175 Accesses

Abstract

We introduce a generic construction principle for homomorphic encryption schemes based on coding theory These possess several non-standard positive features. First, they are not restricted to linear homomorphism but allow for evaluating multivariate polynomials up to a fixed (but arbitrary) degree μ on encrypted field elements. Second, they can be instantiated with various error correcting codes, even for codes with poor correcting capabilities. Third, depending on the deployed code, one can achieve very efficient schemes.

As a concrete example, we present an instantiation based on Reed-Muller codes where for μ = 2 and μ = 3 and security levels between 80 and 128 bits, all operations take less than a second (after some pre-computation). However, our analysis reveals also limitations on this approach. For structural reasons, such schemes cannot be public-key, allow for a limited number of fresh encryptions only, and cannot be combined with the bootstrapping technique. We argue why such schemes are nonetheless useful in certain application scenarios and discuss possible directions on how to overcome these issues.

The work described in this paper has been supported by the Commission of the European Communities through the ICT program under contract ICT-2007-216676 (ECRYPT-II). L. Perret is also supported by the french ANR under the CAC project (ANR-09-JCJCJ-0064-01) and the EXACTA project (ANR-09-BLAN-0371-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armknecht, F., Augot, D., Perret, L., Sadeghi, A.-R.: On constructing homomorphic encryption schemes from coding theory. Eprint Report, 309 (2011)

    Google Scholar 

  2. Armknecht, F., Peter, A., Katzenbeisser, S.: A cleaner view on IND-CCA1 secure homomorphic encryption using SOAP. Cryptology ePrint Archive, Report 2010/501 (2010), http://eprint.iacr.org/

  3. Avanzi, R.: Lightweight asymmetric cryptography and alternatives to RSA, ecrypt european network of excellence in cryptology ist-2002-507932 (2005), http://www.ecrypt.eu.org/ecrypt1/documents/D.AZTEC.2-1.2.pdf

  4. Benaloh, J.: Verifiable secret-ballot elections. PhD thesis, Yale University, New Haven, CT, USA (1987)

    Google Scholar 

  5. Boneh, D., Lipton, R.J.: Algorithms for Black-box Fields and their Application to Cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

    Google Scholar 

  6. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. Cryptology ePrint Archive, Report 2010/453 (2010); Accepted to PKC 2011

    Google Scholar 

  7. Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Chen, H., Cramer, R.: Algebraic Geometric Secret Sharing Schemes and Secure Multi-party Computations over Small Fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Chen, H., Cramer, R., de Haan, R., Pueyo, I.C.: Strongly Multiplicative Ramp Schemes from High Degree Rational Points on Curves. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 451–470. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Cluzeau, M., Finiasz, M., Tillich, J.-P.: Methods for the reconstruction of parallel turbo codes. CoRR, abs/1006.0259 (2010)

    Google Scholar 

  12. Cohen, J., Fischer, M.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: FOCS, pp. 372–382. IEEE (1985)

    Google Scholar 

  13. Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Cramer, R., Franklin, M., Schoenmakers, L., Yung, M.: Multi-authority secret-ballot elections with linear work. Technical report, CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands (1995)

    Google Scholar 

  15. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. European Transactions on Telecommunications 8(5), 481–490 (1997)

    Article  Google Scholar 

  16. Cramer, R.: The Arithmetic Codex: Theory and Applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, p. 1. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Damgaard, I., Jurik, M.: A Generalisation, a Simplification and some Applications of Paillier’s Probabilistic Public-key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! Contemporary Mathematics 168, 51–61 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  20. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009), crypto.stanford.edu/craig

  21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  22. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin [36], pp. 155–172

    Google Scholar 

  24. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  26. Høoholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. I, pp. 871–961. Elsevier (1998)

    Google Scholar 

  27. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of Reed-Solomon codes. Cryptology ePrint Archive, Report 2007/153 (2007), http://eprint.iacr.org/

  28. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS 1997: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), p. 364. IEEE Computer Society, Washington, DC, USA (1997)

    Google Scholar 

  29. Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library. North Holland (1983)

    Google Scholar 

  30. Melchor, C.A., Gaborit, P., Herranz, J.: Additively homomorphic encryption with -operand multiplications. In: Rabin [36], pp. 138–154

    Google Scholar 

  31. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Paillier, P.: Public-key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  33. Prabhakaran, M., Rosulek, M.: Homomorphic Encryption with CCA Security. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 667–678. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Pueyo, I.C., Chen, H., Cramer, R., Xing, C.: Asymptotically good ideal linear secret sharing with strong multiplication over ny fixed finite field. In: Halevi [25], pp. 466–486

    Google Scholar 

  35. Pueyo, I.C., Cramer, R., Xing, C.: The torsion-limit for algebraic function fields and its application to arithmetic secret sharing. In: Halevi [25], pp. 466–486

    Google Scholar 

  36. Rabin, T. (ed.): CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  37. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  38. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  39. Valembois, A.: Detection and recognition of a binary linear code. Discrete Applied Mathematics 111(1-2), 199–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Valembois, A.: Décodage, Détection et Reconnaissance des Codes Linéaires Binaires. PhD thesis, Université Limoges (2004)

    Google Scholar 

  41. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armknecht, F., Augot, D., Perret, L., Sadeghi, AR. (2011). On Constructing Homomorphic Encryption Schemes from Coding Theory. In: Chen, L. (eds) Cryptography and Coding. IMACC 2011. Lecture Notes in Computer Science, vol 7089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25516-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25516-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25515-1

  • Online ISBN: 978-3-642-25516-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics