Abstract
We introduce a generic construction principle for homomorphic encryption schemes based on coding theory These possess several non-standard positive features. First, they are not restricted to linear homomorphism but allow for evaluating multivariate polynomials up to a fixed (but arbitrary) degree μ on encrypted field elements. Second, they can be instantiated with various error correcting codes, even for codes with poor correcting capabilities. Third, depending on the deployed code, one can achieve very efficient schemes.
As a concrete example, we present an instantiation based on Reed-Muller codes where for μ = 2 and μ = 3 and security levels between 80 and 128 bits, all operations take less than a second (after some pre-computation). However, our analysis reveals also limitations on this approach. For structural reasons, such schemes cannot be public-key, allow for a limited number of fresh encryptions only, and cannot be combined with the bootstrapping technique. We argue why such schemes are nonetheless useful in certain application scenarios and discuss possible directions on how to overcome these issues.
The work described in this paper has been supported by the Commission of the European Communities through the ICT program under contract ICT-2007-216676 (ECRYPT-II). L. Perret is also supported by the french ANR under the CAC project (ANR-09-JCJCJ-0064-01) and the EXACTA project (ANR-09-BLAN-0371-01).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armknecht, F., Augot, D., Perret, L., Sadeghi, A.-R.: On constructing homomorphic encryption schemes from coding theory. Eprint Report, 309 (2011)
Armknecht, F., Peter, A., Katzenbeisser, S.: A cleaner view on IND-CCA1 secure homomorphic encryption using SOAP. Cryptology ePrint Archive, Report 2010/501 (2010), http://eprint.iacr.org/
Avanzi, R.: Lightweight asymmetric cryptography and alternatives to RSA, ecrypt european network of excellence in cryptology ist-2002-507932 (2005), http://www.ecrypt.eu.org/ecrypt1/documents/D.AZTEC.2-1.2.pdf
Benaloh, J.: Verifiable secret-ballot elections. PhD thesis, Yale University, New Haven, CT, USA (1987)
Boneh, D., Lipton, R.J.: Algorithms for Black-box Fields and their Application to Cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996)
Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. Cryptology ePrint Archive, Report 2010/453 (2010); Accepted to PKC 2011
Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)
Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)
Chen, H., Cramer, R.: Algebraic Geometric Secret Sharing Schemes and Secure Multi-party Computations over Small Fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)
Chen, H., Cramer, R., de Haan, R., Pueyo, I.C.: Strongly Multiplicative Ramp Schemes from High Degree Rational Points on Curves. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 451–470. Springer, Heidelberg (2008)
Cluzeau, M., Finiasz, M., Tillich, J.-P.: Methods for the reconstruction of parallel turbo codes. CoRR, abs/1006.0259 (2010)
Cohen, J., Fischer, M.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: FOCS, pp. 372–382. IEEE (1985)
Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)
Cramer, R., Franklin, M., Schoenmakers, L., Yung, M.: Multi-authority secret-ballot elections with linear work. Technical report, CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands (1995)
Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. European Transactions on Telecommunications 8(5), 481–490 (1997)
Cramer, R.: The Arithmetic Codex: Theory and Applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, p. 1. Springer, Heidelberg (2011)
Damgaard, I., Jurik, M.: A Generalisation, a Simplification and some Applications of Paillier’s Probabilistic Public-key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)
Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! Contemporary Mathematics 168, 51–61 (1993)
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)
Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009), crypto.stanford.edu/craig
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)
Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)
Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin [36], pp. 155–172
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)
Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)
Høoholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. I, pp. 871–961. Elsevier (1998)
Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of Reed-Solomon codes. Cryptology ePrint Archive, Report 2007/153 (2007), http://eprint.iacr.org/
Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS 1997: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), p. 364. IEEE Computer Society, Washington, DC, USA (1997)
Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library. North Holland (1983)
Melchor, C.A., Gaborit, P., Herranz, J.: Additively homomorphic encryption with -operand multiplications. In: Rabin [36], pp. 138–154
Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)
Paillier, P.: Public-key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Prabhakaran, M., Rosulek, M.: Homomorphic Encryption with CCA Security. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 667–678. Springer, Heidelberg (2008)
Pueyo, I.C., Chen, H., Cramer, R., Xing, C.: Asymptotically good ideal linear secret sharing with strong multiplication over ny fixed finite field. In: Halevi [25], pp. 466–486
Pueyo, I.C., Cramer, R., Xing, C.: The torsion-limit for algebraic function fields and its application to arithmetic secret sharing. In: Halevi [25], pp. 466–486
Rabin, T. (ed.): CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer, Heidelberg (2010)
Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)
Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)
Valembois, A.: Detection and recognition of a binary linear code. Discrete Applied Mathematics 111(1-2), 199–218 (2001)
Valembois, A.: Décodage, Détection et Reconnaissance des Codes Linéaires Binaires. PhD thesis, Université Limoges (2004)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Armknecht, F., Augot, D., Perret, L., Sadeghi, AR. (2011). On Constructing Homomorphic Encryption Schemes from Coding Theory. In: Chen, L. (eds) Cryptography and Coding. IMACC 2011. Lecture Notes in Computer Science, vol 7089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25516-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-25516-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25515-1
Online ISBN: 978-3-642-25516-8
eBook Packages: Computer ScienceComputer Science (R0)