Abstract
Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization. Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, ideally a representative sample of efficient solutions. In this paper, we propose the biobjective long and multiple path problems. We show experimentally that, on the first problem, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problem, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of multiobjective local search algorithms. This work opens new discussions on a proper definition of multiobjective fitness landscapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horn, J., Goldberg, D., Deb, K.: Long path problems. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg (1994)
Rudolph, G.: How mutation and selection solve long path problems in polynomial expected time. Evolutionary Computation 4(2), 195–205 (1996)
Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple objective combinatorial optimization. Technical Report 102/2006, University of Kaiserslautern, Department of Mathematics (2006)
Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria combinatorial optimization. European Journal of Operational Research 97(1), 159–166 (1997)
Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis. In: Multiobjective Programming and Goal Programming. LNEMS, vol. 618, pp. 69–77. Springer, Heidelberg (2009)
Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Metaheuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp. 177–199. Springer, Heidelberg (2004)
Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Heidelberg (2005)
Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing: an International Journal 3(1), 37–51 (2004)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Serafini, P.: Some considerations about computational complexity for multiobjective combinatorial problems. In: Recent Advances and Historical Development of Vector Optimization. LNEMS, vol. 294. Springer, Heidelberg (1986)
Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998)
Horoba, C., Neumann, F.: Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. In: Tenth Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 79–86. ACM, New York (2009)
Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation 14(1), 58–79 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Verel, S., Liefooghe, A., Humeau, J., Jourdan, L., Dhaenens, C. (2011). On the Effect of Connectedness for Biobjective Multiple and Long Path Problems. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-25566-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25565-6
Online ISBN: 978-3-642-25566-3
eBook Packages: Computer ScienceComputer Science (R0)