Abstract
Barreto-Lynn-Scott (BLS) curves are a stand-out candidate for implementing high-security pairings. This paper shows that particular choices of the pairing-friendly search parameter give rise to four subfamilies of BLS curves, all of which offer highly efficient and implementation-friendly pairing instantiations.
Curves from these particular subfamilies are defined over prime fields that support very efficient towering options for the full extension field. The coefficients for a specific curve and its correct twist are automatically determined without any computational effort. The choice of an extremely sparse search parameter is immediately reflected by a highly efficient optimal ate Miller loop and final exponentiation. As a resource for implementors, we give a list with examples of implementation-friendly BLS curves through several high-security levels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit Formulas for Computing Pairings Over Ordinary Curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)
Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management - part 1: General (revised). Technical report, NIST National Institute of Standards and Technology, Published as NIST Special Publication 800–57 (2007), http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing Elliptic Curves with Prescribed Embedding Degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)
Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Benger, N.: Cryptographic Pairings: Efficiency and DLP Security. PhD thesis, Dublin City University (May 2010)
Benger, N., Scott, M.: Constructing Tower Extensions of Finite Fields for Implementation of Pairing-Based Cryptography. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010)
Beuchat, J.-L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing Over Barreto–Naehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)
Costello, C., Hişil, H., Boyd, C., Nieto, J.M.G., Wong, K.K.-H.: Faster pairings on special Weierstrass curves. In: Shacham and Waters [30], pp. 89–101 (2009)
Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with High-Degree Twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010)
Devegili, A.J., hÉigeartaigh, C.Ó., Scott, M., Dahab, R.: Multiplication and squaring on pairing-friendly fields. Cryptology ePrint Archive, Report 2006/471 (2006), http://eprint.iacr.org/
Dominguez Perez, L.J., Scott, M.: Private communication (November 2010)
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptology 23(2), 224–280 (2010)
Granger, R., Scott, M.: Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010)
Hankerson, D., Menezes, A.J., Scott, M.: Software implementation of pairings. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography, pp. 188–206. IOS Press (2008)
Heß, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)
Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate texts in mathematics, vol. 84. Springer, Heidelberg (1990)
Karabina, K.: Squaring in cyclotomic subgroups. Cryptology ePrint Archive, Report 2010/542 (2010), http://eprint.iacr.org/
Lauter, K., Montgomery, P.L., Naehrig, M.: An Analysis of Affine Coordinates for Pairing Computation. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 1–20. Springer, Heidelberg (2010)
Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17, 235–261 (2004)
Naehrig, M.: Constructive and computational aspects of cryptographic pairings. PhD thesis, Eindhoven University of Technology (May 2009)
Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On Compressible Pairings and Their Computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 371–388. Springer, Heidelberg (2008)
Naehrig, M., Niederhagen, R., Schwabe, P.: New Software Speed Records for Cryptographic Pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)
Pereira, G.C.C.F., Simplício Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A family of implementation-friendly BN elliptic curves. Journal of Systems and Software 84(8), 1319–1326 (2011), http://cryptojedi.org/papers/#fast-bn
Rubin, K., Silverberg, A.: Choosing the correct elliptic curve in the CM method. Mathematics of Computation 79, 545–561 (2010)
Scott, M.: Scaling security in pairing-based protocols. Cryptology ePrint Archive, Report 2005/139 (2005), http://eprint.iacr.org/
Scott, M.: A note on twists for pairing friendly curves (February 2009), Personal webpage ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf
Scott, M.: On the efficient implementation of pairing-based protocols. Cryptology ePrint Archive, Report 2011/334 (2011), http://eprint.iacr.org/
Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)
Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham and Waters [30], pp. 78–88 (2009)
Shacham, H., Waters, B. (eds.): Pairing 2009. LNCS, vol. 5671. Springer, Heidelberg (2009)
Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate texts in mathematics, vol. 106. Springer, Heidelberg (1986)
Smart, N. (ed.): ECRYPT II yearly report on algorithms and keysizes (2009-2010). Technical report, ECRYPT II – European Network of Excellence in Cryptology, EU FP7, ICT-2007-216676, Published as deliverable D.SPA.13 (2010), http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costello, C., Lauter, K., Naehrig, M. (2011). Attractive Subfamilies of BLS Curves for Implementing High-Security Pairings. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-25578-6_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25577-9
Online ISBN: 978-3-642-25578-6
eBook Packages: Computer ScienceComputer Science (R0)