Skip to main content

Two Fixed-Parameter Algorithms for the Cocoloring Problem

  • Conference paper
Algorithms and Computation (ISAAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7074))

Included in the following conference series:

Abstract

A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. Given a graph G and integers k and ℓ, the Cocoloring Problem is the problem of deciding if G has a (k,ℓ)-cocoloring. It is known that determining the cochromatic number (the minimum k + ℓ such that G is (k,ℓ)-cocolorable) is NP-hard [24]. In 2011, Bravo et al. obtained a polynomial time algorithm for P 4-sparse graphs [8]. In this paper, we generalize this result by obtaining a polynomial time algorithm for (q,q − 4)-graphs for every fixed q, which are the graphs such that every subset of at most q vertices induces at most q − 4 induced P 4’s. P 4-sparse graphs are (5,1)-graphs. Moreover, we prove that the cocoloring problem is FPT when parameterized by the treewidth tw(G) or by the parameter q(G), defined as the minimum integer q ≥ 4 such that G is a (q,q − 4)-graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Krivelevich, M., Sudakov, B.: Subgraphs with a large cochromatic number. J. Graph Theory 25, 295–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babel, L., Kloks, T., Kratochvl, J., Kratsch, D., Muller, H., Olariu, S.: Efficient algorithms for graphs with few P4s. Discrete Mathematics 235(23), 29–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babel, L., Olariu, S.: On the structure of graphs with few P 4’s. Discrete Applied Mathematics 84, 1–13 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bondy, A., Murty, U.S.R.: Graph Theory. Springer (2008)

    Google Scholar 

  6. Brandstädt, A.: Partitions of graphs into one or two independent sets and cliques. Discrete Mathematics 152, 47–54 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bravo, R.S.F., Klein, S., Nogueira, L.T.: Characterizing (k,ℓ)-partitionable cographs. In: 7th International Colloquium on Graph Theory, Hyeres. Electronic Notes in Discrete Mathematics vol. 22, pp. 277–280 (2005)

    Google Scholar 

  8. Bravo, R., Klein, S., Nogueira, L., Protti, F.: Characterization and recognition of P4-sparse graphs partitionable into k independent sets and ℓ cliques. Discrete Applied Mathematics 159, 165–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bravo, R., Klein, S., Nogueira, L., Protti, F., Sampaio, R.: Partitioning extended P 4-laden graphs into cliques and stable sets (submitted, 2011)

    Google Scholar 

  10. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear Time Solvable Optimization Problems on Certain Graph Families. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 1–16. Springer, Heidelberg (1999)

    Google Scholar 

  11. Demange, M., Ekim, T., de Werra, D.: Partitioning cographs into cliques and stable sets. Discrete Optimization 2, 145–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős, P., Gimbel, J.: Some problems and results in cochromatic theory. In: Quo Vadis, Graph Theory?, pp. 261–264. North-Holland, Amsterdam (1993)

    Google Scholar 

  13. Erdős, P., Gimbel, J., Kratsch, D.: Some extremal results in cochromatic and dichromatic theory. J. Graph Theory 15, 579–585 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdős, P., Gimbel, J., Straight, H.J.: Chromatic number versus cochromatic number in graphs with bounded clique number. European J. Combin. 11, 235–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feder, T., Hell, P.: Matrix partitions of perfect graphs. Discrete Mathematics 306, 2450–2460 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feder, T., Hell, P., Hochstttler, W.: Generalized colourings (matrix partitions) of cographs. In: Graph Theory in Paris. Trends in Mathematics, pp. 149–167 (2007)

    Google Scholar 

  17. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of list partition. In: 31st Annual ACM Symposium on Theory of Computing, pp. 464–472. Plenum Press, New York (1999)

    Google Scholar 

  18. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM Journal on Discrete Mathematics 16, 449–478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fomin, F.V., Kratsch, D., Novelli, J.C.: Approximating minimum cocolorings. Information Processing Letters 84, 285–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heggernes, P., Kratsch, D., Lokshtanov, D., Raman, V., Saurabh, S.: Fixed-Parameter Algorithms for Cochromatic Number and Disjoint Rectangle Stabbing. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 334–345. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Hell, P., Klein, S., Nogueira, L.T., Protti, F.: Partitioning chordal graphs into independent sets and cliques. Discrete Applied Mathematics 141, 185–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jamison, B., Olariu, S.: A tree representation for P4-sparse graphs. Discrete Applied Mathematics 35(2), 115–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lesniak, L., Straight, H.J.: The cochromatic number of a graph. Ars Combinatoria 3, 39–46 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Wagner, K.: Monotonic coverings of finite sets. Elektron. Inform. Kybernet. 20, 633–639 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campos, V., Klein, S., Sampaio, R., Silva, A. (2011). Two Fixed-Parameter Algorithms for the Cocoloring Problem. In: Asano, T., Nakano, Si., Okamoto, Y., Watanabe, O. (eds) Algorithms and Computation. ISAAC 2011. Lecture Notes in Computer Science, vol 7074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25591-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25591-5_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25590-8

  • Online ISBN: 978-3-642-25591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics