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Abstract Motivated by the imminent growth of massive, highly redundant genomic databases, we study
the problem of compressing a string database while simultaneously supporting fast random access, sub-
string extraction and pattern matching to the underlying string(s). Bille et al. (2011) recently showed
how, given a straight-line program with r rules for a string s of length n, we can build an O(r)-word data
structure that allows us to extract any substring of length m in O(log n + m) time. They also showed
how, given a pattern p of length m and an edit distance k ≤ m, their data structure supports find-
ing all occ approximate matches to p in s in O

(
r(min(mk, k4 + m) + log n) + occ

)
time. Rytter (2003)

and Charikar et al. (2005) showed that r is always at least the number z of phrases in the LZ77 parse
of s, and gave algorithms for building straight-line programs with O(z log n) rules. In this paper we
give a simple O(z log n)-word data structure that takes the same time for substring extraction but only
O
(
z min(mk, k4 + m) + occ

)
time for approximate pattern matching.

Keywords Compressed pattern matching · Approximate pattern matching · LZ77

1 Introduction

The recent revolution in high-throughput sequencing technology has made the acquisition of large ge-
nomic sequences drastically cheaper and faster. As the new technology takes hold, ambitious sequencing
projects such as the 1,000 Human Genomes [4] and the 10,000 Vertebrate Genomes [10] projects are
set to create large databases of strings (genomes) that vary only slightly from each other, and so will
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contain large numbers of long repetitions. Efficient storage of these collections is not enough: fast access
to enable search and sequence alignment is paramount. The utility of such a data structure is not limited
to the treatment of DNA collections. Ferragina and Manzini’s recent study of the compressibility of web
pages reveals enormous redundancy in web crawls [5]. Exploiting this redundancy to reduce space while
simultaneously enabling fast access and search over crawled pages (for snippet generation or cached
page retrieval) is a significant challenge. The problem of compressing and indexing such highly repetitive
strings (or string collections) was introduced in [20] (see also [15]). With an LZ78- or BWT-based data
structure [1, 6] we can store a string s of length n in space bounded in terms of the tth-order empirical
entropy [16], for any t = o(logσ n), and later extract any substring of length m in O(m/ logσ n) time.
For very repetitive texts, however, compression based on the LZ77 [23] can use significantly fewer than
nHt(s) bits [20].

Rytter [19] showed that the number z of phrases in the LZ77 parse of s is at most the number of rules
in the smallest straight-line program (SLP) for s1. He then showed how the LZ77 parse can be turned
into an SLP for s with O(z log n) rules whose parse-tree has height O(log n). This SLP can be viewed as a
data structure that stores s in O(z log n) words and supports substring extraction in O(log n + m) time.
Bille, Landau, Raman, Rao, Sadakane and Weimann [2] showed how, given an SLP for s with r rules, we
can build a data structure that takes O(r) words and supports substring extraction in O(log n + m) time
regardless of the height of the parse tree. Unfortunately, since no polynomial-time algorithm is known
to produce an SLP for s with o(z log n) rules, even with no bound on the height, we still do not know
how, efficiently, to build a data structure that has better bounds than Rytter’s.

Bille et al. [2] also show how, given a pattern p of length m and an edit distance k ≤ m, their data
structure supports finding all occ approximate matches to p in s in O

(
r(min(mk, k4 + m) + log n) + occ

)
time. Their main idea is that, if there is a rule X → Y Z in the SLP and we have already found all
the approximate matches in expansions of Y and Z then, to find all the approximate matches in the
expansion of X, we need only search the substring consisting of the m+k last characters of Y ’s expansion
concatenated with the first m+k characters of Z’s expansion. Extracting these characters with their data
structure takes O(log n + m) time per rule, or O(r(log n + m)) time in total. In this paper we discuss
two improvements to this idea: first, by the same argument, we need only search the m + k characters
to either side of the phrase boundaries in the LZ77 parse; second, since we know in advance where those
phrase boundaries are, we do not need the full power of random access. Our first observation immediately
improves Bille et al.’s time bound for approximate matching to O

(
z(min(mk, k4 + m) + log n) + occ

)
,

while our second has led us to develop a data structure whose time bound is O
(
z min(mk, k4 + m) + occ

)
.

Neither Rytter’s nor Bille et al.’s data structures are practical. However, in another strand of recent
work, Kreft and Navarro [12, 13] introduced a variant of LZ77 called LZ-End and gave a data structure
based on it with which we can store s in O(z′ log n) + o(n) bits, where z′ is the number of phrases in
the LZ-End parse of s, and later extract any phrase (not arbitrary substring) in time proportional to
its length. The o(n) term can be removed at the cost of slowing extraction down by an O(log n) factor.
Extracting arbitrary substrings is fast in practice but could be slow in the worst case. Also, although
the LZ-End encoding is small in practice for very repetitive strings, it is not clear whether z′ can be
bounded in terms of z.

Our Contribution. In this paper we describe a simple O(z log n)-word data structure, which we call
the block graph for s, that takes O(log n + `− f) time to extract any substring s[f..`] but lets us add
bookmarks to speed up extraction from pre-specified points. This allows us to find all occ approximate
matches of a pattern of length m in O

(
z min(mk + m, k4 + m) + occ

)
time. Our space bound (in terms

of z) and substring extraction time are the same as Bille et al.’s [2]; our approximate pattern matching
time is faster both because we replace r by z (which, as noted above, they can too) and because we
remove the log n term, which is due to the overhead for random access. More importantly, however, our
results require much simpler machinery. We believe the block graph is the first practical data structure
with solid theoretical guarantees for compression and retrieval of highly repetitive collections.

In the next section we describe the block graph. Then, in Section 3, we relate the size of the block
graph to the size of the LZ77 parsing of its underlying string. We show that a block graph naturally
compresses the string while allowing efficient random access and extraction of substrings. In Section 4
we show how to augment the block graph to support fast approximate pattern matching. In Section 6

1 In this paper we consider only the version of LZ77 without self-referencing, sometimes called LZSS [21].
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Fig. 1 The block graph for the eighth Fibonacci string, abaababaabaababaababa, truncated at depth 3.

we describe a practical implementation of the block graph and compare its performance to that of Kreft
and Navarro’s data structure.

We note that the idea of searching only around phrase boundaries in the LZ77 parse could be useful
in other contexts. For example, suppose we want to build an index for approximate pattern matching in
a text and we know in advance reasonable upper bounds M and K on the lengths of the patterns and
the edit distances in which we will be interested. We can extract the M + K characters to either side
of each boundary, obtaining substrings of length 2(M +K); separate each pair of consecutive substrings
by K + 1 copies of a character not in the alphabet; and build an index for the resulting modified string,
which could be much smaller. For any pattern of length at most M and any edit distance at most K, the
original string contains an approximate match if and only if the modified string does; moreover, from
the positions of the approximate matches in the modified string and the structure of the LZ77 parse, we
can use two-sided range reporting to deduce the positions of the approximate matches in the original
string [9]. We hope to use similar ideas to reduce the space usage of hash-based indexes [22].

2 Block graphs

For the moment, assume n = 2h for some integer h. We start building the block graph of s with node
〈1..n〉, which we call the root and consider to be at depth 0. For 0 ≤ d < t, for each node v = 〈i..i+b−1〉
at depth d, where b = 2t−d is the block size at depth d, we add pointers from v to nodes 〈i..i+ b/2− 1〉,
〈i+ b/4..i+ 3b/4− 1〉 and 〈i+ b/2..i+ b− 1〉, creating those nodes if necessary. We call these three nodes
the children of v and each other’s siblings, and we call v their parent. Notice that a node can have two
parents. We associate with each node 〈i..j〉 the block s[i..j] of characters in s. If n is not a power of 2,
then we append blanks to s until it is. After building the block graph, we remove any nodes whose blocks
contain only blanks or blanks and characters in another block at the same depth, and replace any node
〈i..j〉 with j > n by 〈i..n〉. We delete all pointers to any such nodes.

We can reduce the size of the block graph by truncating it such that we keep only the nodes at depths
where storing three pointers takes less space than storing a block of characters explicitly. We mark as
an internal node each node whose block is the first occurrence of that substring in s. At the deepest
internal nodes, instead of storing a pointer, we store the nodes’ blocks explicitly. We mark as a leaf all
nodes whose block is not unique and whose parents are internal nodes. We then remove any node that is
not marked as an internal node or a leaf. Figure 1 shows the block graph for the eighth Fibonacci string,
abaababaabaababaababa, truncated at depth 3. Oval nodes are internal nodes and rectangular nodes are
leaves. Notice that the root has only two children, because the block for node 〈17..32〉 would contain
only blanks and characters in s[9..21], so 〈17..32〉 is removed; similarly, 〈21..24〉 is removed.

The key phase in building the block graph is updating the leaves’ pointers, shown in Figure 1 as
the arrows below rectangular nodes. Suppose a leaf u at depth d had a child 〈i..j〉, which was been
removed because it was neither an internal node nor a leaf. Consider the first occurrence s[i′..j′] in s of
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the substring s[i..j]. Notice that s[i′..j′] is completely contained within some block at depth d — this is
one reason why we use overlapping blocks — and, since s[i′..j′] is the first occurrence of that substring
in s, that block is associated with an internal node v. We replace the pointer from u to 〈i..j〉 by a pointer
to v and the offset of i′ in v’s block. For the example shown in Figure 1, 〈17..21〉 previously had children
〈17..20〉 and 〈19..21〉. The blocks s[17..20] = abab and s[19..21] = aba, which first occur in positions 4
and 1, respectively. Therefore, we replace 〈17..21〉’s pointer to 〈17..20〉 by a pointer to 〈1..8〉 and the
offset 3; we replace its pointer to 〈19..21〉 by another pointer to 〈1..8〉 and the offset 0.

Extracting a single character s[i] in O(log n) time is fairly straightforward: we start at the root and
repeatedly descend to any child whose block contains s[i]; if we come to a leaf u such that s[i] is the jth
character in u’s block but, instead of pointing to a child whose block contains s[i], u stores a pointer
to internal node v and offset c, then we follow u’s pointer to v and extract the (j + c)th character in
v’s block; finally, when we arrive at an internal node with maximum depth, we report the appropriate
character of its block, which is stored there explicitly. By definition the maximum depth of the block
graph is log n and at each depth, we either descend immediately in O(1) time, or follow a pointer from
a leaf to an internal node in O(1) time and then descend. Therefore, we use a total of O(log n) time.

For example, suppose we want to extract the 11th character from s = abaababaabaababaababa using
the block graph shown in Figure 1. Starting at the root, we can descend to either child, since both their
blocks contain s[11]; suppose we descend to the left child, 〈1..16〉. From 〈1..16〉 we can descend to either
the middle or right children; suppose we descend to the right child, 〈9..16〉. Since 〈9..16〉 is a leaf, the
pointer to child 〈9..12〉 has been replaced by a pointer to 〈1..8〉 and offset 0, while the pointer to child
〈11..14〉 has been replaced by another pointer to 〈1..8〉 and offset 2. This is because the first occurrence
of s[9..12] = abaa is s[1..4] and the first occurrence of s[11..14] = aaba is s[3..6]. Suppose we follow the
second pointer. Since we would have extracted the first character from 〈11..14〉’s block, we are now to
extract the third character from 〈1..8〉’s block. We can descend to either 〈1..4〉 and extract the third
character of its block, or descend to 〈3..6〉 and extract the first character of its block.

Extracting longer substrings is similar, but complicated by the fact that we want to avoid breaking
the substring into too many pieces as we descend. In the next section we will show how to extract any
substring of length m in O(log n + m) time; however, we first prove an upper bound on the block graph’s
size.

3 Fast random access in compressed space

In this section we show that block graphs achieve compression while simultaneously allowing easy access
to the underlying string. Our space result relies on the following easily proved lemma.

Lemma 1 ([7]) The first occurrence of any substring in s must touch at least one boundary between
phrases in the LZ77 parse.

Lemma 1 allows us to relate the size of the block graph to the LZ77 parsing of the underlying string,
as summarized below.

Theorem 1 The block graph for s takes O
(
z log2 n

)
bits.

Proof Each internal node’s block is the first occurrence of that substring in s so, by Proposition 1, it
must touch at least one boundary between phrases in the LZ77 parse. Since each such boundary can
touch at most three blocks in the same level, there are at most 3z internal nodes in each level. It follows
that there are O(z log n) nodes in all. Since each node stores O(log n) bits, the whole block graph takes
O
(
z log2 n

)
bits.

We define the query extract(u, i, j) to return the ith through jth characters in u’s block. Notice that,
if u is the root, then these characters are s[i..j]. We now show how to implement extract queries in such
a way that extracting a substring of s with length m takes O(log n + m) time.

There are three cases to consider when performing extract(u, i, j): u could be an internal node at
maximum depth, in which case we simply return the ith through jth characters of its block, which are
stored explicitly; u could be an internal node with children; or u could be a leaf. First suppose that u is
an internal node with children. Let d be u’s depth and b = 2dlog2 ne−d; notice b is the length of u’s block
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unless the block is a suffix of s, in which case the block might be shorter. If the interval [i..j] is completely
contained in one of the intervals [1..b/2], [b/4+1..3b/4] or [b/2+1..b], then we set v to be the left, middle
or right child of u, respectively (choosing arbitrarily if two intervals each completely contain [i..j]), and
implement extract(u, i, j) as either extract(v, i, j), extract(v, i− b/4, j− b/4) or extract(v, i− b/2, j− b/2).
Otherwise, [i..j] must be more than a quarter of [1..b] and we can split [i..j] into 2 or 3 subintervals, each
of length at least b/8 but completely contained in one of [1..b/2], [b/4 + 1..3b/4] or [b/2 + 1..b]; this is
the other reason why we use overlapping blocks. We implement extract(u, i, j) with an extract query for
each subinterval.

Now suppose that u is a leaf. Again, let d be u’s depth and b = 2dlog2 ne−d. If the interval [i..j] is
completely contained in one of the intervals [1..b/2], [b/4 + 1..3b/4] or [b/2 + 1..b], then we set v to be
the first, second or third internal node at the same depth to which u points, respectively, and implement
extract(u, i, j) as extract(v, i′, j′), where i′ and j′ are i and j plus the appropriate offset. Otherwise, [i..j]
must be more than a quarter of [1..b]; we split [i..j] into subintervals and implement extract(u, i, j) with
an extract query for each subinterval, as before.

Theorem 2 Extracting a substring s[f..`] from the block graph of s takes O(log n + `− f) time.

Proof Consider the query extract(root, f, `) and let d be the first depth at which we split the interval.
Descending to depth d takes a total of O(d) time. By induction, if we perform a query extract(v, i, j) on
a node v at depth d′ > d, then j− i+ 1 is more than a quarter of the block size 2dlog2 ne−d

′
at that level.

It follows that we make O
(

(`− f + 1)/2logn−d
′
)

calls to extract at depth d′, each of which takes O(1)

time. Summing over the depths, we use a total of O(log n + `− f) time. ut

One interesting property of our block graph structure is that, at the cost of storing a node for every
possible block of size n/2d — i.e., storing O

(
2d log n

)
extra bits — we can remove the top d levels and,

thus, change the overall space bound to O
(
z(log n− d) log n + 2d log n

)
bits and reduce the access time

to O(log n− d). For example, if d = log z, then we store a total of O(z log n log(n/z)) bits and need only
O(log(n/z)) time for access. If d = log(n/ log2 n), then we store a total of O(z log n log logn + n/ log n)
bits and reduce the access time to O(log log n).

González and Navarro [11] showed how, by applying grammar-based compression to a difference-coded
suffix array (SA), we can build a new kind of compressed suffix array that supports access to SA[i..j] in
O(log n + `− f) time. It seems likely that, by using a modified block graph of the difference-coded suffix
array instead of a grammar, we can improve their access time to O(log log n + `− f) at the cost of only
slightly increasing their space bound.

4 Accelerated approximate pattern matching

Suppose we are given an uncompressed string s of length n, the LZ77 parse [23] of s, a pattern p of
length m ≤ n and an edit distance k ≤ m. The primary matches of p are the substrings of s within edit
distance k of p whose characters are all within distance (m + k) of phrase boundaries in the parse. It is
not difficult to find all p’s primary matches in O

(
z min(mk + m, k4 + m)

)
time, where z is the number

of phrases. To do this, we extract the substrings all of whose characters are within distance (m + k) of
phrase boundaries and apply to them either the sequential approximate pattern-matching algorithm by
Landau and Vishkin [14] or the one by Cole and Hariharan [3].

Once we have found p’s primary matches, we can use them to find the approximate matches not
within distance (m + k) of any phrase boundary, which are called p’s secondary matches. To do this,
we process the phrases from left to right, maintaining a sorted list of the approximate matches we have
already found. For each phrase copied from a previous substring s[i..j], we search in the list to see if
there are any approximate matches in s[i..j] that are not completely contained in s[i..i + m + k − 1] or
s[j −m − k + 1..j]. If there are, we insert the corresponding secondary matches in our list. Processing
all the phrases takes O(z + occ) time, where occ is the number of approximate matches to p in s. Notice
that finding p’s secondary matches does not require access to s.

As noted in Section 1, Bille et al. [2] showed how, given a straight-line program for s with r rules, we
can build an O(r)-word data structure that allows us to extract any substring s[f..`] in O(log n + `− f)
time. When the straight-line program is built with the best known algorithm for approximately minimiz-
ing the number of rules, r = O(z log n) [19]. It follows that we can store s in O(z log n) words such that,
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given p and k, in O(z(log n + m)) time we can extract all the characters within distance (m+k) of phrase
boundaries and, therefore, find all p’s approximate matches in O

(
z(min(mk + m, k4 + m) + log n) + occ

)
time. (Bille et al. themselves gave a bound of O

(
r(min(mk + m, k4 + m) + log n) + occ

)
but, since even

the smallest straight-line program for s has at least z rules [19], the one we state is slightly stronger.)
The key to supporting approximate pattern matching in the block graph is the addition of bookmarks,

which will allow us to quickly extract certain regions of the underlying string. To add a bookmark to a
character s[i], for each block size b in the block graph, we store pointers to the two nodes whose blocks
of size 2b completely contain the first occurrence of the substrings s[i− b + 1..i] and s[i..i + b− 1], and
those occurrences’ offsets in the blocks. Thus, storing a bookmark takes O(log n) words. To extract a
substring that touches s[i], we extract, separately, the parts of the substring to the left and right of s[i].
Without loss of generality, we assume the part s[i..j] to the right is longer and consider only how to
extract it. We first find the smallest block size b ≥ j − i + 1, then follow the pointer to the node whose
block of size 2b contains the first occurrence s[i..i + b− 1]. Since that node has height O(log(j − i + 1)),
we can extract s[i..j] in O(j − i + 1) time.

Lemma 2 Extracting a substring s[f..`] that touches a bookmark takes O(`− f) time.

Inserting a bookmark to each phrase boundary in the LZ77 parse takes O(z log n) words and allows
us, given m and k, to extract the characters within distance (m + k) of phrase boundaries in a total of
O(zm) time. Combined with the approach described above for finding secondary occurrences, we have
our main result.

Theorem 3 Let s be a string of length n whose LZ77 parse consists of z phrases. We can store s in
O(z log n) words such that, given a pattern p of length m ≤ n and an edit distance k ≤ m, we can find
all occ substrings of s within edit distance k of p in O

(
z min(mk + m, k4 + m) + occ

)
time.

Note that, in the above theorem, the time to find all p’s approximate matches is the same as if we
were keeping s uncompressed, as in the approach described at the start of this section.

We note in passing that we can combine our results with those of Kreft and Navarro [13] to obtain
a new worst-case upper bound for LZ77-based indexing. Specifically, replacing their data structures for
access to the string by a block graph with a bookmark at each phrase boundary, and replacing two of
their other data structures by faster (and larger, but still O

(
z log2 n

)
bits) data structures, we can store

s in O
(
z log2 n

)
bits such that, given a pattern p of length m, we can find all occurrences of p in s in

O
(
m2 + (m + occ) log log z

)
time. Their index is practical but potentially larger and slower in the worst

case.

5 Efficient representation of block graphs

We now describe an implementation of block graphs which is efficient in practice. The main idea is to
represent the shape of the graph (the internal nodes and their pointers) using bitvectors and operations
from succinct data structures, and to carefully allocate space for the leaf nodes depending on their
distance from the root. Below we make use of two familiar operations for bitvectors: rank and select.
Given a bitvector B, a position i, and a type of bit b (either 0 or 1), rankb(B, i) returns the number of
occurrences of b before position i in B and selectb(B, i) returns the position of the ith b in B. Efficient
data structures supporting these operations have been extensively studied (see, e.g. [17, 18]).

Each level of the block graph consists of a number of nodes, either internal nodes, or leaves. Let Bd
be a bitvector which says whether the ith node (from the left) at depth d is a leaf, Bd[i] = 0, or an
internal node Bd[i] = 1. We define another bitvector Rd, where Rd[i] = 1 if and only if Bd[i] = 1 and
Bd[i + 1] = 1 for i < n − 1. That is, we mark a 1 bit for each instance of two adjacent internal nodes
in Bd, otherwise Rd[i] = 0. Let Ld be an array that holds leaf nodes at depth d. The structure of a
leaf node is discussed below. Finally, let T be the concatenation of the textual representation (ie. the
corresponding substrings) of all internal nodes at the truncated depth.

Navigating the block graph. The main operation is to traverse from an internal node to one of its three
children. Say we are currently at the jth internal node at depth d of the block graph — that is, we are at
Bd[i], where i = select1(Bd, j). Each internal node has three children. If these children were independent
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then locating the left child of the current node would be simply three times the node’s position on its
level, that is 3j = 3 · rank1(Bd, i). However, in a block graph adjacent internal nodes share exactly one
child, so we correct for this by subtracting the number of adjacent internal nodes at this depth prior to
the current node — this is given by rank1(Rd, i). To find the position corresponding to the left child of
a node in Bd+1 we compute

leftchild(Bd, i) = 3rank1(Bd, i)− rank1(Rd, i)

Given the address of the left child it is easy to find the center or right child by adding 1 or 2
respectively to the result of leftchild. If Bd[i] = 0 then we are at a leaf node. Intuitively, to access its leaf
information in Ld we call Ld[rank0(Bd, i)]. Once we reach the truncated depth to access the text of an
internal node we compute its offset in T , T [(rank1(Bd, i) ∗ truncated length)].

Leaf nodes. In a block graph leaves point to internal nodes. For each leaf we store two values, the
position of the destination node on the current level, and an offset in the destination node pointing to
the beginning of the leaf block. Note that we do not need to store the depth of the destination node. It
is, by definition, on the level above the leaf, and we know this by keeping keep track of the depth during
each step in a traversal. To improve compression we store leaf positions and offsets in two separate arrays.
At depth d there are no more than 2d+1−1 possible nodes, so we can store each position in log(2d+1−1)
bits. Given that the length of a node at depth d is b = 2dlogne−d and leaf nodes point to an internal node
on the level above, we store each offset in log(2dlogne−d−1) bits.

6 Experiments

We have developed an implementation of block graphs2 and tested it on the real-world texts of the
Pizza-Chili Repetitive Corpus3, a standard testbed for data structures designed for repetitive strings.

We compared compression acheived by the block graph to the LZ-End data structure by Kreft and
Navarro [12], and to the general-purpose compressors gzip and 7zip; the results are shown in Table 1.
We used gzip and 7zip with the settings -9 and -t7z -m0=lzma -mx=9 -mfb=64 -md=32m -ms=on, re-
spectively, while LZ-End was executed with its default settings. Throughout our experiments all block
graphs were truncated such that the smallest blocks each took 4 bytes. Note that gzip and 7zip provide
compression only, not random access, and are included as reference points for acheivable compression.

We then compared how quickly block graphs and LZ-End support extracting substrings of vari-
ous lengths; the results are shown in Figure 2. Each run of extractions was performed across 10,000
randomly-generated queries. Experiments were conducted on an Intel Core i7-2600 3.4 GHz proces-
sor with 8GB of main memory, running Linux 3.3.4; code was compiled with GCC version 4.7.0 tar-
geting x86 64 with full optimizations. Caches were dropped between runs with sync && echo 1 >

/proc/sys/vm/drop caches.
Although 7zip achieves much better compression block graphs achieve better compression than gzip

except on the Escherichia Coli and influenza files. Most importantly, our experiments show that block
graphs generally achieve compression comparable to that achieved by LZ-End while supporting signifi-
cantly faster substring extraction.

7 Conclusions

Efficient storage and retrieval of highly repetitive strings, and approximate pattern matching in them,
are important tools in bioinformatics and will become even more important as genomic databases grow.
In this paper we have presented a new data structure, the block graph, that stores highly repetitive
strings in compressed space, supports random access in reasonable time and supports extraction from
pre-specified points much faster. Our analysis and experiments show that the block graph is competitive
both in theory and in practice.

2 Available at http://www.github.com/choobin/block-graph
3 http://pizzachili.dcc.uchile.cl/repcorpus.html
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Table 1 Size in bytes of repetitive corpus files encoded with ASCII, gzip, 7zip, LZ-End and block graphs.

Collection ASCII gzip 7zip LZ-End Block graph

Escherichia Coli 112,689,515 31,535,023 6,147,962 49,106,638 49,716,456
cere 461,286,644 120,834,282 6,077,972 41,342,784 57,689,376
coreutils 205,281,778 49,920,838 3,999,812 35,863,520 47,795,692
einstein.en.txt 467,626,544 163,664,285 323,779 2,247,204 3,969,392
influenza 154,808,555 10,636,899 2,111,974 21,507,089 33,171,036
kernel 257,961,616 69,396,104 2,087,006 19,347,734 24,045,332
para 429,265,758 116,073,220 8,117,573 57,415,176 72,393,196
world leaders 46,968,181 8,287,665 606,438 4,525,317 7,321,720
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20. Sirén J, Välimäki N, Mäkinen V, Navarro G (2008) Run-length compressed indexes are superior for
highly repetitive sequence collections. In: Proceedings of the 15th Symposium on String Processing
and Information Retrieval (SPIRE), pp 164–175

21. Storer JA, Szymanski TG (1982) Data compression via textual substitution. Journal of the ACM
29(4):928–951

9



22. Vezzi F, Del Fabbro C, Tomescu AI, Policriti A (2012) rNA: a fast and accurate short reads numerical
aligner. Bioinformatics 28(1):123–124

23. Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory 23(3):337–343

10


	1 Introduction
	2 Block graphs
	3 Fast random access in compressed space
	4 Accelerated approximate pattern matching
	5 Efficient representation of block graphs
	6 Experiments
	7 Conclusions

