Skip to main content

Discontinuous Galerkin as Time-Stepping Scheme for the Navier–Stokes Equations

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes
  • 1169 Accesses

Abstract

In this work we describe a fast solution algorithm for the time dependent Navier–Stokes equations in the regime of moderate Reynolds numbers. Special to this approach is the underlying discretization: both for spatial and temporal discretization we apply higher order Galerkin methods. In space, standard Taylor-Hood like elements on quadrilateral or hexahedral meshes are used. For time discretization, we employ discontinuous Galerkin methods. This combination of Galerkin discretizations in space and time allows for a consistent variational space-time formulation of the Navier Stokes equations. This brings along the benefit of a well defined adjoint problem to be used for optimization methods based on the Euler-Lagrange approach and for adjoint error estimation methods. Special care is given to the solution of the algebraic systems. Higher order discontinuous Galerkin formulations in time ask for a coupled treatment of multiple solution states. By an approximative factorization of the system matrices we can reduce the complex system to a multi-step method employing only standard backward Euler like time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Becker, M. Braack, A finite element pressure gradient stabilization for the Stokes Equations based on local projections, Calcolo Vol. 38, No. 4, pp 173-199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Becker, M. Braack, Multigrid techniques for finite elements on locally refined meshes, Numerical linear Algebra with Applications, Vol. 7, pp 363-379 (2000)

    MathSciNet  MATH  Google Scholar 

  3. R. Becker, R. Rannacher, An Optimal Control Approach to A Posteriori Error Estimation in Finite Element Methods, Acta Numerica 2001, Cambridge University Press, Vol. 37, pp 1-225, (2001)

    MathSciNet  Google Scholar 

  4. M. Braack, E. Burman, V. John, G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. Vol. 196, 853-866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Brezinski, U. Ieea, J. V. Iseghem, A Taste of Pade Approximation, Acta Numerica 4:53-103, Cambridge University Press (1995)

    Google Scholar 

  6. V. Girault, P.-A. Raviart, Finite Element Methods for the Navier–Stokes Equations, Springer: Berlin-Heidelberg-New York, (1986)

    Book  MATH  Google Scholar 

  7. J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Math. Fluids (22), pp 325-352 (1992)

    Article  MathSciNet  Google Scholar 

  8. C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25(4), pp. 908–926, (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Meidner, B. Vexler, Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems, SIAM J. on Control Optimization 46(1), pp 116–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Richter, A. Springer, B. Vexler, Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems, accepted for Numerische Mathematik, 2012

    Google Scholar 

  11. M. Schäfer, S. Turek, Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), Flow Simulation with High-Performance Computers II. DFG priority research program results 1993-1995, pp 547-566, Vieweg, Wiesbaden (1996)

    Google Scholar 

  12. M. Schmich, Adaptive Finite Element Methods for Nonstationary Incompressible Flow Problems, Dissertation, Universität Heidelberg (2009)

    Google Scholar 

  13. M. Schmich, B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., Vol. 30, No. 1, pp. 369-393.

    Google Scholar 

  14. M. Schmich, B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., Vol. 30, No. 1, pp. 369-393, (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Turek, Efficient Solvers for Incompressible Flow Problems, Lecture Notes in Computational Science and Engineering 6, Springer, (1999)

    Google Scholar 

  16. The Finite Element Toolkit Gascoigne, http://www.gascoigne.uni-hd.de.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, T. (2012). Discontinuous Galerkin as Time-Stepping Scheme for the Navier–Stokes Equations. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25707-0_22

Download citation

Publish with us

Policies and ethics