Abstract
The ongoing efforts to develop an in-house Euler solver on a multi-block structured grid using the finite volume method are briefly presented in this paper. The flux through the control volume’s surface is computed using Roe’s scheme and extended to second order using the MUSCL approach. The steady state solution is determined using a time-marching approach with a modified Runge–Kutta scheme in the core. The acceleration of convergence to a steady solution is realized using a preconditioned multigrid method, a highly efficient method making explicit schemes such as the Runge–Kutta scheme competitive compared to implicit schemes. The numerical results clearly demonstrate the capability of the developed Euler solver to handle complex configurations and the superior efficiency of the preconditioned multigrid method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Blazed: Computational fluid dynamics: principles and application. Elsevier, 2001
N. A. Pierce: Preconditioned multigrid methods for compressible flow calculations on stretched meshes. PhD Thesis, Oxford University (1977)
M. Manna: A three dimensional high resolution upwind finite volume Euler solver. Technical note, April 1992, von Karman Institute
P.L. Roe: Approximate Riemann Solvers, Parameter Vector and Difference Schemes. Journal of Computational Physics 43, 1, 357–372 (1981)
R.C. Swanson, E. Turkel: Multistage schemes with multigrid for Euler and Navier–Stokes equations - components and analysis. NASA Technical paper 3631. August 1997
A. Jameson, W. Schmidt, E. Turkel: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259 (1981)
N. A. Pierce, M. B. Giles: Preconditioned multigrid methods for compressible flow calculations on stretched meshes. Journal of Computational Physics 136, 425-445 (1997)
N.A. Pierce, M.B. Giles, A. Jameson, L. Martinelli: Accelerating three-dimensional Navier–Stokes calculations. AIAA Paper 97-1953 (1997)
D. Lee, B. van Leer: Progress in local preconditioning of the Euler and Navier–Stokes equations. AIAA Paper 97-3328-CP (1993)
K. Hosseini, J. J. Alonso: Optimization of multistage coefficients for explicit multigrid flow solvers. AIAA Paper 3705 (2003)
K. Hosseini, J. J. Alonso: Practical implementation and improvement of preconditioning methods for explicit multistage solvers. AIAA Paper 0763 (2004)
B. Eisfeld, H. M. Bleecke, N. Kroll, H. Ritzdorf: Structured grid solver II: Parallelization of block structured flow solvers. AGARD-FDP-VKI special course on “Parallel computing in CFD”, Von Karman Institute (1995)
G. Winter, J. Pelriaux, M. Galan, P. Cuesta: Genetic algorithms in engineering and computer science. John Wiley & Sons (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tinh, T.T., Son, D.T., Thi, N.A. (2012). Development of a Three Dimensional Euler Solver Using the Finite Volume Method on a Multiblock Structured Grid. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25707-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-25707-0_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25706-3
Online ISBN: 978-3-642-25707-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)