Skip to main content

Sequential Feature Selection for Classification

  • Conference paper
AI 2011: Advances in Artificial Intelligence (AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7106))

Included in the following conference series:

Abstract

In most real-world information processing problems, data is not a free resource; its acquisition is rather time-consuming and/or expensive. We investigate how these two factors can be included in supervised classification tasks by deriving classification as a sequential decision process and making it accessible to Reinforcement Learning. Our method performs a sequential feature selection that learns which features are most informative at each timestep, choosing the next feature depending on the already selected features and the internal belief of the classifier. Experiments on a handwritten digits classification task show significant reduction in required data for correct classification, while a medical diabetes prediction task illustrates variable feature cost minimization as a further property of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazzani, L., de Freitas, N., Larochelle, H., Murino, V., Ting, J.A.: Learning attentional policies for tracking and recognition in video with deep networks. In: Proceedings of the 28th International Conference on Machine Learning (2011)

    Google Scholar 

  2. Deisenroth, M.P., Rasmussen, C.E., Peters, J.: Gaussian process dynamic programming. Neurocomputing 72(7-9), 1508–1524 (2009)

    Article  Google Scholar 

  3. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal of Machine Learning Research 6(1), 503 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, CA (October 2011), http://archive.ics.uci.edu/ml/

  5. Gaudel, R., Sebag, M.: Feature selection as a one-player game. In: Proceedings of the 2nd NIPS Workshop on Optimization for Machine Learning (2009)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hüsken, M., Stagge, P.: Recurrent neural networks for time series classification. Neurocomputing 50, 223–235 (2003)

    Article  MATH  Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Neumann, G., Pfeiffer, M., Hauser, H.: Batch reinforcement learning methods for point to point movements. Technical report, Graz University of Technology (2006)

    Google Scholar 

  10. Norouzi, E., Nili Ahmadabadi, M., Nadjar Araabi, B.: Attention control with reinforcement learning for face recognition under partial occlusion. Machine Vision and Applications, 1–12 (2010)

    Google Scholar 

  11. Perkins, S., Theiler, J.: Online feature selection using grafting. In: Proceedings of the 20th International Conference on Machine Learning (2003)

    Google Scholar 

  12. Riedmiller, M.: Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Saar-Tsechansky, M., Provost, F.: Handling missing values when applying classification models. Journal of Machine Learning Research 8(1625-1657), 9 (2007)

    MATH  Google Scholar 

  14. Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. International Journal of Neural Systems 2(1), 135–141 (1991)

    Google Scholar 

  15. Vijayakumar, S., Schaal, S.: Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space. In: Proceedings of the Seventeenth International Conference on Machine Learning (2000)

    Google Scholar 

  16. Williams, R.J., Peng, J.: An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation 2(4), 490–501 (1990)

    Article  Google Scholar 

  17. Wu, X., Yu, K., Wang, H., Ding, W.: Online streaming feature selection. In: Proceedings of the 27nd International Conference on Machine Learning (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rückstieß, T., Osendorfer, C., van der Smagt, P. (2011). Sequential Feature Selection for Classification. In: Wang, D., Reynolds, M. (eds) AI 2011: Advances in Artificial Intelligence. AI 2011. Lecture Notes in Computer Science(), vol 7106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25832-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25832-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25831-2

  • Online ISBN: 978-3-642-25832-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics