Abstract
Despite the availability of medical information on the Internet, health consumers still encounter problems to find and interpret this information. The complexity of the medical knowledge and the use of technical terms hinder the communication of such information. In this work we have analyzed and characterized the health consumer terminology in the breast cancer field in order to provide health services more adapted to their language and to their level of knowledge of medical concepts. The work has been done on the basis of a concept-based terminology built from two kinds of corpus of texts: health consumer corpus and health mediator corpus. The resulted concept-based terminology has been analyzed using different quantitative and qualitative methods on several levels: term, concept and relation levels.
The concept-based terminology has been the core of a health consumer query reformulation pilot study. This work proposes the use of spreading activation technique through the terminology to infer new concepts from the ones initially identified in a health consumer question. A description of the spreading activation algorithm and its preliminary evaluation are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.R.: A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behaviour 22, 261–295 (1983)
Berger, H., Dittenbach, M., Merkl, D.: Activation on the Move: Querying Tourism Information Via Spreading Activation. In: MaÅ™Ãk, V., Å tÄ›pánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 474–483. Springer, Heidelberg (2003)
Bernhard, D.: Ontology building based on text corpora. Master’s thesis, Institut National Polytechnique de Grenoble (2003)
Blois, M.S.: Information and medicine. University of California Press, Berkeley (1984)
Bourigault, D., Aussenac-Gilles, N.: Construction d’ontologies à partir de textes. In: TALN, Batz-sur-Mer (2003)
Drouin, P.: Spécificités lexicales et acquisition de la terminologie. In: Actes des 7e Journées Internationales d’Analyse Statistique des Données Textuelles (JADT-2004), Louvain-la-Neuve, Belgique, pp. 345–352 (2004)
Eysenbach, G., Till, E.J.: Ethical issues in qualitative research on internet communities. British Medical Journal 323, 1103–1105 (2001)
Gemoets, D., Rosemblat, G., Tse, T., Logan, R.: Assessing readability of consumer health information: an exploratory study. Medinfo 11, 869–873 (2004)
Lebart, L., Salem, A.: Statistique textuelle, Dunod, Paris (1994)
Phillips, M.: Lexical structure of text. Discourse analysis monograph, English Language Research: University of Birmingham (12) (1989)
Plovnick, R.M., Zeng, Q.T.: Reformulation of consumer health queries with professional terminology: A pilot study. Journal of Medical Internet Research JMIR 27, 1–10 (2004)
Rosemblat, G., Logan, R., Tse, T., Graham, L.: Text features and readability: Expert evaluation of consumer health text. In: Medical Internet. MEDNET (2006)
Rousselot, F.: L’outil de traitement de corpus likes. In: Actes de TALN, Fès, Maroc (2004)
Rousselot, F., Frath, P.: Terminologie et intelligence artificielle. Traits d’union, G. Kleiber et N. Le Querler, dir., pp. 181–192. Presses Universitaires de Caen (2000)
Shoval, P.: Expert/consultation system for a retrieval data base with semantic network of concepts. In: Crouch, C.J. (ed.) Theoretical Issues in Information Retrieval, Proceedings of the Fourth International Conference on Information Storage and Retrieval, pp. 145–149. ACM, Oakland (1981)
Szulman, S., Biébow, B., Aussenac-Gilles, N.: Vers un environnement intégré pour la structuration de terminologies: Terminae. In: Terminologie et Intelligence Artificielle, Rencontres No4, Nancy, France, May 03, pp. 98–108 (2001)
Tse, T.: Identifying and Characterizing a Consumer Medical Vocabulary. PhD thesis, College of Information Studies, University of Maryland, College Park (2003)
Tse, T., Soergel, D.: Exploring medical expressions used by consumers and the media: An emerging view of consumer health vocabularies. In: AMIA Annu. Symp. Proc., pp. 674–678 (2003)
Vivaldi, J., Marquez, L., Rodriguez, H.: Improving term extraction by system combination using boosting. In: Proceedings of ECML, pp. 515–526 (2001)
Zeng, Q., Kim, H., Goryachev, S., Keselman, A., Slaughter, L., Smith, C.: Text characteristics of clinical reports and their implications for the readability of personal health records. Stud. Health Technol. Inform. 129, 1117–1121 (2007)
Zeng, Q., Kogan, S., Ash, N., Greenes, R.A., Boxwala, A.A.: Characteristics of consumer terminology for health information retrieval. Methods Inf. Med. 41(4), 289–298 (2002)
Zeng, Q., Tse, T.: A case for developing an open-source first-generation consumer health vocabulary. MedInfo 11, 511–515 (2004)
Zeng, Q.T., Tse, T.: Exploring and developing consumer health vocabularies. J. Am. Med. Inform. Assoc. 13, 24–29 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Messai, R., Simonet, M., Bricon-Souf, N., Mousseau, M. (2012). Analyzing Health Consumer Terminology for Query Reformulation Tasks. In: Guillet, F., Ritschard, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25838-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-25838-1_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25837-4
Online ISBN: 978-3-642-25838-1
eBook Packages: EngineeringEngineering (R0)