Abstract
To efficiently answer OLAP queries on data warehouses, pre-computed data cubes provide an interesting solution. Nevertheless, the amount of generated aggregated data is huge and requires large amounts of storage space and mining time. To address this issue, various research works highlighted the added-value of compact representations of data cubes from which the remaining redundant patterns can be derived. In this respect, we introduce in this chapter a new concise and exact representation called closed non derivable data cubes (CND-Cube), which is based on the concept of non derivable minimal generators. We also propose a novel algorithm dedicated to the mining of CND-Cube from multidimensional databases. Our experiment results show the effectiveness of our approach in comparison with those fitting in the same trend. In this comparison, we focus on the efficiency of our algorithm and the compactness of the storage space terms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the ACM-SIGMOD International Conference on Management of Data, Washington, USA, pp. 207–216 (1993)
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), Santiago, Chile, pp. 478–499 (1994)
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining Minimal Non-Redundant Association Rules Using Frequent Closed Itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)
Ben Messaoud, R., Rabaséda, S.L., Boussaid, O., Missaoui, R.: Enhanced Mining of Association Rules from Data Cubes. In: Proceedings of the 9th ACM International Workshop on Data Warehousing and OLAP, Arlington, Virginia, USA, pp. 11–18 (2006)
Ben Yahia, S., Gasmi, G., Mephu Nguifo, E.: A New Generic Basis of Factual and Implicative Association Rules. Intelligent Data Analysis (IDA) 13(4), 633–656 (2009)
Beyer, K., Ramakrishnan, R.: Bottom-Up Computation of Sparse and Iceberg CUBEs. In: Proceedings of the 1999 ACM-SIGMOD International Conference on Management of Data (SIGMOD 1999), Philadelphia, Pennsylvania, USA, pp. 359–370 (1999)
Brahmi, H., Hamrouni, T., Ben Messaoud, R., Ben Yahia, S.: Closed Non Derivable Data Cubes Based on Non Derivable Minimal Generators. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS, vol. 5678, pp. 55–66. Springer, Heidelberg (2009)
Brahmi, H., Hamrouni, T., Messaoud, R.B., Yahia, S.B.: CND-Cube: Nouvelle Représentation Concise Sans Perte d’Information d’un Cube de Données. In: Proceedings of the French-Speaking Conference on Knowledge Extraction and Management (EGC 2010), Hammamet, Tunisia, pp. 261–272 (2010)
Calders, T., Goethals, B.: Non-Derivable Itemset Mining. Data Mining and Knowledge Discovery 14(1), 171–206 (2007)
Casali, A., Cicchetti, R., Lakhal, L.: Cube Lattices: A Framework for Multidimensional Data Mining. In: Proceedings of the 3rd SIAM International Conference on Data Mining, San Francisco, USA, pp. 304–308 (2003a)
Casali, A., Cicchetti, R., Lakhal, L.: Extracting Semantics from Data Cubes using Cube Transversals and Closures. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, USA, pp. 69–78 (2003b)
Casali, A., Cicchetti, R., Lakhal, L.: Closed Cubes Lattices. Annals of Information Systems 3, 145–165 (2009a); Special Issue on New Trends in Data Warehousing and Data Analysis
Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L., Novelli, N.: Lossless Reduction of Datacubes Using Partitions. International Journal of Data Warehousing and Mining (IJDWM) 4(1), 18–35 (2009b)
Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 26(1), 65–74 (1997)
Galambos, J., Simonelli, I.: Bonferroni-type Inequalities with Applications. Springer (2000)
Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.: Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery 1(1), 29–53 (1997)
Ji, L., Tan, K.-L., Tung, A.K.H.: Mining Frequent Closed Cubes in 3D Datasets. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB 2006), Seoul, Korea, pp. 811–822 (2006)
Lakshmanan, L., Pei, J., Han, J.: Quotient Cube: How to Summarize the Semantics of a Data Cube. In: CAiSE 2002 and VLDB 2002, pp. 778–789 (2002)
Morfonios, K., Ioannidis, Y.E.: Cure for Cubes: Cubing Using a ROLAP Engine. In: Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, pp. 379–390 (2006)
Muhonen, J., Toivonen, H.: Closed Non-Derivable Itemsets. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 601–608. Springer, Heidelberg (2006)
Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Cube Fermés/ Quotients Émergents. In: Proceedings of the French-Speaking Conference on Knowledge Extraction and Management (EGC 2010), Hammamet, Tunisia, pp. 285–296 (2010)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Journal of Information Systems 24(1), 25–46 (1999)
Pedersen, T., Jensen, C., Dyreson, C.: Supporting Imprecision in Multidimensional Databases Using Granularities. In: Proceedings of the 11th International Conference on Scientific and Statistical Database Management (SSDBM 1999), Cleveland, Ohio, USA, pp. 90–101 (1999)
Ross, K., Srivastava, D.: Fast Computation of Sparse Data Cubes. In: Proceedings of the 23rd International Conference on Very Large Databases (VLDB 1997), Athens, Greece, pp. 116–125 (1997)
Shao, Z., Han, J., Xin, D.: MM-Cubing: Computing Iceberg Cubes by Factorizing the Lattice Space. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM 2004), Washington, DC, USA, pp. 213–222 (2004)
Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: Shrinking the Petacube. In: Proceedings of the 2002 ACM-SIGMOD International Conference on Management of Data (SIGMOD 2002), Madison, USA, pp. 464–475 (2002)
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg Concept Lattices with Titanic. Journal on Knowledge and Data Engineering (KDE) 2(42), 189–222 (2002)
Wang, M., Iyer, B.: Efficient Roll-Up and Drill-Down Analysis in Relational Databases. In: Proceedings of the Workshop on Research Issues on Data Mining and Knowledge Discovery (SIGMOD 1997), Tucson, Arizona, pp. 39–43 (1997)
Wang, W., Lu, H., Feng, J., Yu, J.: Condensed Cube: An Effective Approach to Reducing Data Cube Size. In: Proceedings of the 18th International Conference on Data Engineering (ICDE 2002), San Jose, USA, pp. 213–222 (2002)
Xin, D., Han, J., Li, X., Wah, B.: Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration. In: Proceedings of the 29th International Conference on Very Large Data Bases (VLDB 2003), Berlin, Germany, pp. 476–487 (2003)
Yannis, S., Nick, R.: The Polynomial Complexity of Fully Materialized Coalesced Cubes. In: Proceedings of the 13th International Conference on Very Large Data Bases, Toronto, Canada, pp. 540–551 (2004)
Zhao, Y., Deshpande, P., Naughton, J.: An Array-Based Algorithm for Simultaneous Multidimensional Aggregates. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data (SIGMOD 1997), Tucson, Arizona, United States, pp. 159–170 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Brahmi, H., Hamrouni, T., Ben Messaoud, R., Ben Yahia, S. (2012). A New Concise and Exact Representation of Data Cubes. In: Guillet, F., Ritschard, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25838-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-25838-1_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25837-4
Online ISBN: 978-3-642-25838-1
eBook Packages: EngineeringEngineering (R0)