Skip to main content

A New Hybrid Clustering Method for Reducing Very Large Spatio-temporal Dataset

  • Conference paper
Advanced Data Mining and Applications (ADMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7120))

Included in the following conference series:

  • 986 Accesses

Abstract

Spatio-temporal datasets are often very large and difficult to analyse. Recently a lot of interest has arisen towards data-mining techniques to reduce very large spatio-temporal datasets into relevant subsets as well as to help visualisation tools to effectively display the results. Cluster-based mining methods have proven to be successful at reducing the large size of raw data by extracting useful knowledge as representatives. As a consequence, instead of dealing with a large size of raw data, we can use these representatives to visualise or to analyse the data without losing important information. In this paper, we present a new hybrid approach for reducing large spatio-temporal datasets. This approach is based on the combination of density-based and graph-based clustering. Drawing on the Shared Nearest Neighbour concept, it applies the Euclidean metric distance to determine the nearest neighbour similarity. We also present and discuss the evaluation of the results for this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall (2003)

    Google Scholar 

  2. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley (2006)

    Google Scholar 

  3. Ye, N. (ed.): The Handbook of Data Mining. Lawrence Erlbaum Associates Publishers, Mahwah (2003)

    Google Scholar 

  4. Johnston, W.L.: Model visualisation. In: Information Visualisation in Data Mining and Knowledge Discovery, pp. 223–227. Morgan Kaufmann, Los Altos (2001)

    Google Scholar 

  5. Le-Khac, N.-A., Bue, M., Whelan, M., Kechadi, M.-T.: A Clustering-Based Data Reduction for Very Large Spatio-Temporal Datasets. In: Cao, L., Zhong, J., Feng, Y. (eds.) ADMA 2010, Part II. LNCS, vol. 6441, pp. 43–54. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Roddick, J.F., Hornsby, K., Spiliopoulou, M.: An updated bibliography of temporal, spatial, and spatio-temporal data mining research. In: Roddick, J., Hornsby, K.S. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, pp. 147–163. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Roddick, J.F., Lees, B.G.: Paradigms for Spatial and Spatio-Temporal Data Mining. In: Miller, H., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery. Taylor & Francis (2001)

    Google Scholar 

  8. Kivinen, J., Mannila, H.: The power of sampling in knowledge discovery. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART, Minneapolis, Minnesota, United States, May 24-27, pp. 77–85 (1994)

    Google Scholar 

  9. Sayood, K.: Introduction to Data Compression, 2nd edn. Morgan Kaufmann (2000)

    Google Scholar 

  10. Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T.: Exploratory Spatio-Temporal Data Mining and Visualization. Journal of Visual Languages and Computing 18(3), 255–279 (2007)

    Article  Google Scholar 

  11. Whelan, M., Le-Khac, N.-A., Kecahdi, M.-T.: Data Reduction in Very Large Spatio-Temporal Data Sets. In: IEEE International Workshop On Cooperative Knowledge Discovery and Data Mining 2010 (WETICE 2010), Larissa, Greece (June 2010)

    Google Scholar 

  12. Bertolotto, M., Di Martino, S., Ferrucci, F., Kechadi, T.: Towards a Framework for Mining and Analysing Spatio-Temporal Datasets. International Journal of Geographical Information Science 21(8), 895–906 (2007)

    Article  Google Scholar 

  13. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering clusters in Large Spatial Databases with Noise. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 1996), Portland, OR, USA, pp. 226–231 (1996)

    Google Scholar 

  14. Januzaj, E., Kriegel, H.-P., Pfeifle, M.: DBDC: Density-Based Distributed Clustering. In: Jarke, M., Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779, pp. 88–105. Springer, Heidelberg (1994)

    Google Scholar 

  15. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared nearest neighbours. IEEE Transactions on Computers C-22(11), 1025–1034 (1973)

    Article  Google Scholar 

  16. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of Second SIAM International Conference on Data Mining (2003)

    Google Scholar 

  17. National Hurricane Center, Tropical Cyclone Report: Hurricane Isabel (2003), http://www.tpc.ncep.noaa.gov/2003isabel.shtml

  18. Le Khac, N.-A., Whelan, M., Kechadi, M.-T.: Performance Evaluation of a Density-based Clustering Method for Reducing Very Large Spatio-temporal Dataset. In: The 2011 International Conference on Information and Knowledge Engineering (IKE 2011), Las Vegas, USA, July 18-21 (2011)

    Google Scholar 

  19. Ankerst, M., Breunig, M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering Points To Identify the Clustering Structure. In: ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM Press (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whelan, M., Le-Khac, NA., Kechadi, M.T. (2011). A New Hybrid Clustering Method for Reducing Very Large Spatio-temporal Dataset. In: Tang, J., King, I., Chen, L., Wang, J. (eds) Advanced Data Mining and Applications. ADMA 2011. Lecture Notes in Computer Science(), vol 7120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25853-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25853-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25852-7

  • Online ISBN: 978-3-642-25853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics