Abstract
In this paper we give an algorithm for counting the number of all independent sets in a claw-free graph which works in time O *(1.08352n) for graphs with no vertices of degree larger than 3 and O *(1.23544n) for arbitrary claw-free graphs, where n is the number of vertices in the instance graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)
Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae. Theor. Comput. Sci. 332, 265–291 (2005)
Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and Conquer: Domination – A Case Study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)
Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications, Tech. Rep. 05-033, ECCC (2005)
Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223(1-2), 1–72 (1999)
Kutzkov, K.: New upper bound for the #3-SAT problem. Inform. Process. Lett. 105, 1–5 (2007)
Lonc, Z., Truszczynski, M.: Computing minimal models, stable models and answer sets. Theory and Practice of Logic Prog. 6(4), 395–449 (2006)
Ryser, H.J.: Combinatorial Mathematics. The Mathematical Association of America, Washington (1963)
Vadhan, S.P.: The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM J. on Comput. 31, 398–427 (1997)
Wahlström, M.: A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 202–213. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Junosza-Szaniawski, K., Lonc, Z., Tuczyński, M. (2011). Counting Independent Sets in Claw-Free Graphs. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-25870-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25869-5
Online ISBN: 978-3-642-25870-1
eBook Packages: Computer ScienceComputer Science (R0)