Skip to main content

Characterizations of Deque and Queue Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6986))

Included in the following conference series:

Abstract

In graph layouts the vertices of a graph are processed according to a linear order and the edges correspond to items in a data structure inserted and removed at their end vertices. Graph layouts characterize interesting classes of planar graphs: A graph G is a stack graph if and only if G is outerplanar, and a graph is a 2-stack graph if and only if it is a subgraph of a planar graph with a Hamiltonian cycle [2]. Heath and Rosenberg [12] characterized all queue graphs as the arched leveled-planar graphs. In [1], we have introduced linear cylindric drawings (LCDs) to study graph layouts in the double-ended queue (deque) and have shown that G is a deque graph if and only if it permits a plane LCD.

In this paper, we show that a graph is a deque graph if and only if it is the subgraph of a planar graph with a Hamiltonian path. In consequence, we obtain that the dual of an embedded queue graph contains a Eulerian path. We also turn to the respective decision problem of deque graphs and show that it is \(\mathcal{NP}\)-hard by proving that the Hamiltonian path problem in maximal planar graphs is \(\mathcal{NP}\)-hard. Heath and Rosenberg state [12] that queue graphs are “almost” proper leveled-planar. We show that bipartiteness captures this “almost”: A graph is proper leveled-planar if and only if it is a bipartite queue graph.

Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, C., Bachmaier, C., Brandenburg, F.J., Brunner, W., Gleißner, A.: Plane Drawings of Queue and Deque Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 68–79. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Bernhart, F., Kainen, P.: The book thickness of a graph. J. Combin. Theory, Ser. B 27(3), 320–331 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Algebra. Discr. Meth. 8(1), 33–58 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal, V.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons, New York (1985)

    Google Scholar 

  5. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions on Systems, Man, and Cybernetics 18(6), 1035–1046 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 339–358 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  9. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discret. Math. 5(3), 398–412 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J. Comput. 28(5), 1588–1626 (1999)

    Article  MATH  Google Scholar 

  11. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)

    Article  MATH  Google Scholar 

  12. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosenstiehl, P., Tarjan, R.E.: Gauss codes, planar hamiltonian graphs, and stack-sortable permutations. J. of Algorithms 5, 375–390 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)

    Article  MathSciNet  Google Scholar 

  15. Wiegers, M.: Recognizing Outerplanar Graphs in Linear Time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  16. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Tech. rep., Department of EECS, Princeton University (1982)

    Google Scholar 

  17. Wood, D.R.: Bounded Degree Book Embeddings and Three-Dimensional Orthogonal Graph Drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 312–327. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Wood, D.R.: Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In: Proc. of the 18th Annual ACM Symposium on Theory of Computing, STOC 1986, pp. 104–108. ACM, New York (1986)

    Google Scholar 

  20. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auer, C., Gleißner, A. (2011). Characterizations of Deque and Queue Graphs. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25870-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25869-5

  • Online ISBN: 978-3-642-25870-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics