Abstract
In graph layouts the vertices of a graph are processed according to a linear order and the edges correspond to items in a data structure inserted and removed at their end vertices. Graph layouts characterize interesting classes of planar graphs: A graph G is a stack graph if and only if G is outerplanar, and a graph is a 2-stack graph if and only if it is a subgraph of a planar graph with a Hamiltonian cycle [2]. Heath and Rosenberg [12] characterized all queue graphs as the arched leveled-planar graphs. In [1], we have introduced linear cylindric drawings (LCDs) to study graph layouts in the double-ended queue (deque) and have shown that G is a deque graph if and only if it permits a plane LCD.
In this paper, we show that a graph is a deque graph if and only if it is the subgraph of a planar graph with a Hamiltonian path. In consequence, we obtain that the dual of an embedded queue graph contains a Eulerian path. We also turn to the respective decision problem of deque graphs and show that it is \(\mathcal{NP}\)-hard by proving that the Hamiltonian path problem in maximal planar graphs is \(\mathcal{NP}\)-hard. Heath and Rosenberg state [12] that queue graphs are “almost” proper leveled-planar. We show that bipartiteness captures this “almost”: A graph is proper leveled-planar if and only if it is a bipartite queue graph.
Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auer, C., Bachmaier, C., Brandenburg, F.J., Brunner, W., Gleißner, A.: Plane Drawings of Queue and Deque Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 68–79. Springer, Heidelberg (2011)
Bernhart, F., Kainen, P.: The book thickness of a graph. J. Combin. Theory, Ser. B 27(3), 320–331 (1979)
Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Algebra. Discr. Meth. 8(1), 33–58 (1987)
Chvátal, V.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons, New York (1985)
Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions on Systems, Man, and Cybernetics 18(6), 1035–1046 (1988)
Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 339–358 (2004)
Dujmović, V., Wood, D.R.: Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discret. Math. 5(3), 398–412 (1992)
Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J. Comput. 28(5), 1588–1626 (1999)
Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)
Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)
Rosenstiehl, P., Tarjan, R.E.: Gauss codes, planar hamiltonian graphs, and stack-sortable permutations. J. of Algorithms 5, 375–390 (1984)
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)
Wiegers, M.: Recognizing Outerplanar Graphs in Linear Time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)
Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Tech. rep., Department of EECS, Princeton University (1982)
Wood, D.R.: Bounded Degree Book Embeddings and Three-Dimensional Orthogonal Graph Drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 312–327. Springer, Heidelberg (2002)
Wood, D.R.: Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359. Springer, Heidelberg (2002)
Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In: Proc. of the 18th Annual ACM Symposium on Theory of Computing, STOC 1986, pp. 104–108. ACM, New York (1986)
Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Auer, C., Gleißner, A. (2011). Characterizations of Deque and Queue Graphs. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-25870-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25869-5
Online ISBN: 978-3-642-25870-1
eBook Packages: Computer ScienceComputer Science (R0)