Abstract
Boolean-width is a recently introduced graph width parameter. If a boolean decomposition of width w is given, several NP-complete problems, such as Maximum Weight Independent Set, k-Coloring and Minimum Weight Dominating Set are solvable in O *(2O(w)) time [6]. In this paper we study graph classes for which we can compute a decomposition of logarithmic boolean-width in polynomial time. Since 2O(logn) = n O(1), this gives polynomial time algorithms for the above problems on these graph classes. For interval graphs we show how to construct decompositions where neighborhoods of vertex subsets are nested. We generalize this idea to neighborhoods that can be represented by a constant number of vertices. Moreover we show that these decompositions have boolean-width O(logn). Graph classes having such decompositions include circular arc graphs, circular k-trapezoid graphs, convex graphs, Dilworth k graphs, k-polygon graphs and complements of k-degenerate graphs. Combined with results in [1,5], this implies that a large class of vertex subset and vertex partitioning problems can be solved in polynomial time on these graph classes.
This project was partially supported by the Research Council of Norway.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.: On the Boolean-Width of a Graph: Structure and Applications. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 159–170. Springer, Heidelberg (2010)
Brandstädt, A., Kratsch, D.: On the Restriction of Some np-Complete Graph Problems to Permutation Graphs. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 53–62. Springer, Heidelberg (1985)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey (1999)
Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Comb. 67 (2003)
Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Fast algorithms for vertex subset and vertex partitioning problems on graphs of low boolean-width. arXiv
Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-Width of Graphs. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 61–74. Springer, Heidelberg (2009)
Chang, M.S.: Weighted Domination on Cocomparability Graphs. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 122–131. Springer, Heidelberg (1995)
Chang, M.S.: Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. on Computing 27(6), 1671–1694 (1998)
Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied Math. 9, 27–40 (1984)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Process. Lett. 36(5), 231–236 (1990)
Díaz, J., Nešetřil, J., Serna, M., Thilikos, D.M.: H-Colorings of Large Degree Graphs. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 850–857. Springer, Heidelberg (2002)
Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs. Discrete Appllied Math 44(1-3), 65–77 (1993)
Farber, M., Keil, J.: Domination in permutation graphs. J. Algorithms 6, 309–321 (1985)
Geelen, J.F., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs. J. Comb. Theory, Ser. B 84(2), 270–290 (2002)
Golumbic, M.C., Rotics, U.: On the Clique-Width of Perfect Graph Classes Extended Abstract. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 135–147. Springer, Heidelberg (1999)
van’t Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of chordal graphs. Theor. Comput. Sci. 411(40-42), 3601–3613 (2010)
Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inf. Process. Lett. 40(3), 123–129 (1991)
Jelínek, V.: The rank-width of the square grid. Discrete Applied Math 158(7), 841–850 (2010)
Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Applied Math. 42(1), 51–63 (1993)
Kim, K.H.: Boolean matrix theory and its applications. Marcel Dekker (1982)
Kobler, D., Rotics, U.: Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract). In: Proc. SODA, pp. 468–476 (2001)
Kratochvíl, J., Manuel, P.D., Miller, M.: Generalized domination in chordal graphs. Nord. J. Comput. 2(1), 41–50 (1995)
Liang, Y.: Dominations in trapezoid graphs. Inf. Process. Lett. 52(6), 309–315 (1994)
McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)
Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)
Rhee, C., Liang, Y., Dhall, S., Lakshmivarahan, S.: An o(n + m)-time algorithm for finding a minimum-weight dominating set in a permutation graph. SIAM J. on Computing 25(2), 404–419 (1996)
de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions (ISGCI), http://wwwteo.informatik.uni-rostock.de/isgci
Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)
Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math. 10(4), 529–550 (1997)
Tsai, K.H., Hsu, W.L.: Fast algorithms for the dominating set problem on permutation graphs. Algorithmica 9(6), 601–614 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belmonte, R., Vatshelle, M. (2011). Graph Classes with Structured Neighborhoods and Algorithmic Applications. In: Kolman, P., Kratochvíl, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 2011. Lecture Notes in Computer Science, vol 6986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25870-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-25870-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25869-5
Online ISBN: 978-3-642-25870-1
eBook Packages: Computer ScienceComputer Science (R0)