Abstract
Distributed hill-climbing algorithms are a powerful, practical technique for solving large Distributed Constraint Satisfaction Problems (DSCPs) such as distributed scheduling, resource allocation, and distributed optimization. Although incomplete, an ideal hill-climbing algorithm finds a solution that is very close to optimal while also minimizing the cost (i.e. the required bandwidth, processing cycles, etc.) of finding the solution. The Distributed Stochastic Algorithm (DSA) is a hill-climbing technique that works by having agents change their value with probability p when making that change will reduce the number of constraint violations. Traditionally, the value of p is constant, chosen by a developer at design time to be a value that works for the general case, meaning the algorithm does not change or learn over the time taken to find a solution. In this paper, we replace the constant value of p with different probability distribution functions in the context of solving graph-coloring problems to determine if DSA can be optimized when the probability values are agent-specific. We experiment with non-adaptive and adaptive distribution functions and evaluate our results based on the number of violations remaining in a solution and the total number of messages that were exchanged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bacchus, F., van Beek, P.: On the conversion between non-binary constraint satisfaction problems. In: AAAI 1998/IAAI 1998: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, pp. 311–318. American Association for Artificial Intelligence, Menlo Park (1998)
Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 667–674. ACM, New York (2001)
Faltings, B.: Distributed constraint programming. In: van Beek, P., Rossi, F., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, ch. 20, vol. 2, pp. 699–729. Elsevier (2006)
Fitzpatrick, S., Meertens, L.: Distributed Coordination Through Anarchic Optimization. In: Distributed Sensor Networks: A Multiagent Perspective, pp. 257–294. Kluwer Academic Publishers (2003)
Mailler, R.: Using prior knowledge to improve distributed hill climbing. In: Proceedings of the 2006 International Conference on Intelligent Agent Technology (IAT 2006) (2006)
Mailler, R., Lesser, V.: Using Cooperative Mediation to Solve Distributed Constraint Satisfaction Problems. In: Proceedings of Third International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2004) (2004)
Meisels, A.: Distributed search by constrained agents: algorithms, performance, communication. Springer, Heidelberg (2008)
Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2), 281–294 (1989)
Morris, P.: The breakout method for escaping local minima. In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 40–45 (1993)
Richard, A.G.B., Sutton, S.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1999)
Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), pp. 337–343 (1994)
Smith, M., Mailler, R.: Getting What You Pay For: Is Exploration in Distributed Hill Climbing Really Worth It?. In: Int’l Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT (2010)
Yokoo, M.: Asynchronous Weak-Commitment Search for Solving Distributed Constraint Satisfaction Problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 88–102. Springer, Heidelberg (1995)
Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction for formalizing distributed problem solving. In: International Conference on Distributed Computing Systems, pp. 614–621 (1992)
Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed constraint satisfaction problems. In: International Conference on Multi-Agent Systems, ICMAS (1996)
Zhang, W., Wang, G., Wittenburg, L.: Distributed stochastic search for constraint satisfaction and optimization: Parallelism, phase transitions and performance. In: Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, pp. 53–59 (2002)
Zhang, W., Wittenburg, L.: Distributed breakout revisited. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002), pp. 352–357 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Smith, M., Sen, S., Mailler, R. (2012). Adaptive and Non-adaptive Distribution Functions for DSA. In: Desai, N., Liu, A., Winikoff, M. (eds) Principles and Practice of Multi-Agent Systems. PRIMA 2010. Lecture Notes in Computer Science(), vol 7057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25920-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-25920-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25919-7
Online ISBN: 978-3-642-25920-3
eBook Packages: Computer ScienceComputer Science (R0)