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Abstract. In this paper we survey results of two-player games on graphsand
Markov decision processes with parity, mean-payoff and energy objectives, and
the combination of mean-payoff and energy objectives with parity objectives.
These problems have applications in verification and synthesis of reactive sys-
tems in resource-constrained environments.

1 Introduction

Two-player games on graphs and Markov decision processes (MDPs) are standard mod-
els for reactive systems. In the analysis of reactive systems, the problem may specify a
goal as a set of desired traces (such asω-regular specifications), or as a quantitative op-
timization objective for a payoff function on the traces. One classical example of quan-
titative objective is the mean-payoff objective [15, 19]. Recently, the energy objectives
(corresponding to total-payoff functions) have also been considered in the design of
resource-constrained embedded systems such as power-limited systems [2, 5], as well
as in queueing processes, and gambling models (see also [3] and references therein).
The energy objective requires that the sum of the rewards be always nonnegative along
a trace. Energy objectives can be expressed in the setting ofboundaryless one-counter
systems [3]. In recent times, games and MDPs equipped with the combination of a
parity objective (which is a canonical way to express theω-regular conditions [21]),
and a quantitative objective specified as either mean-payoff or energy condition have
been considered [9, 5, 6]. Such combination of quantitativeand qualitative objectives is
crucial in the design of reactive systems with both resourceconstraints and functional
requirements [4, 9, 2, 1]. Also the energy parity objective can be viewed as a natural
extension of boundaryless one-counter systems with fairness conditions.

In this paper we summarize the main results about MDPs and games with parity,
mean-payoff, energy, mean-payoff parity, and energy parity objectives. We also present
an improved algorithm to solve MDPs with mean-payoff parityobjectives.

2 Definitions

Probability distributions. A probability distributionover a finite setA is a function
κ : A → [0, 1] such that

∑
a∈A κ(a) = 1. Thesupportof κ is the setSupp(κ) = {a ∈

A | κ(a) > 0}. We denote byD(A) the set of probability distributions onA.
⋆ This work was partially supported by FWF NFN Grant S11407-N23 (RiSE) and a Microsoft

faculty fellowship.



Markov Decision Processes.A Markov Decision Process(MDP) M = (Q, E, δ) con-
sists of a finite setQ of states partitioned intoplayer-1 statesQ1 andprobabilistic states
QP (i.e.,Q = Q1 ∪ QP andQ1 ∩ QP = ∅), a setE ⊆ Q × Q of edges such that for
all q ∈ Q, there exists (at least one)q′ ∈ Q such that(q, q′) ∈ E, and a probabilistic
transition functionδ : QP → D(Q) such that for allq ∈ QP andq′ ∈ Q, we have
(q, q′) ∈ E iff δ(q)(q′) > 0. We often writeδ(q, q′) for δ(q)(q′). For a stateq ∈ Q, we
denote byE(q) = {q′ ∈ Q | (q, q′) ∈ E} the set of possible successors ofq. A Markov
chainis a special case of MDP whereQ1 = ∅.

Plays.An MDP can be viewed as the arena of a game played for infinitelymany rounds
from a stateq0 ∈ Q as follows. If the game is in a player-1 stateq, then player1 chooses
a successor state from the setE(q); otherwise the game is in a probabilistic stateq, and
the successor is chosen according to the probability distributionδ(q). This game results
in a play from q0, i.e., an infinite pathρ = q0q1 . . . such that(qi, qi+1) ∈ E for all
i ≥ 0. The prefix of lengthn of ρ is denoted byρ(n) = q0 . . . qn, the last state ofρ(n)
is Last(ρ(n)) = qn. We writeΩ for the set of all plays.

Strategies.A strategy(for player1) is a functionσ : Q∗Q1 → Q such that for all
ρ ∈ Q∗, q ∈ Q1, andq′ ∈ QP , if σ(ρ ·q) = q′, then(q, q′) ∈ E. We denote byΣ the set
of all strategies. Anoutcomeof σ from q0 is a playq0q1 . . . whereqi+1 = σ(q0 . . . qi)
for all i ≥ 0 such thatqi ∈ Q1.

Outcomes and measures.Once a starting stateq ∈ Q and a strategyσ ∈ Σ are fixed,
the outcome of the game is a random walkωσ

q for which the probabilities of everyevent
A ⊆ Ω, which is a measurable set of plays, are uniquely defined [22]. For a stateq ∈ Q

and an eventA ⊆ Ω, we denote byPσ
q (A) the probability that a play belongs toA if

the game starts from the stateq and player1 follows the strategyσ. For a measurable
functionf : Ω → R we denote byEσ

q [f ] theexpectationof the functionf under the
probability measurePσ

q (·).

Finite-memory strategies.A strategy usesfinite-memoryif it can be encoded by a
deterministic transducer〈Mem, m0, αu, αn〉 whereMem is a finite set (the memory of
the strategy),m0 ∈ Mem is the initial memory value,αu : Mem × Q → Mem is an
update function, andαn : Mem × Q1 → Q is a next-move function. Thesizeof the
strategy is the number|Mem| of memory values. If the current state is a player-1 stateq,
andm is the current memory value, then the strategy chooses the next stateq′ according
to αn(m, q). If the current state isq, then the memory is updated toαu(m, q). Formally,
〈Mem, m0, αu, αn〉 defines the strategyσ such thatσ(ρ · q) = αn(α̂u(m0, ρ), q) for all
ρ ∈ Q∗ andq ∈ Q1, whereα̂u extendsαu to sequences of states as expected. A strategy
is memorylessif |Mem| = 1, and a memoryless strategyσ : Q1 → Q chooses one edge
for every player 1 state. For a finite-memory strategyσ, Mσ denote the Markov chain
obtained as the product ofM with the transducer definingσ.

Two-player games.A two-player gameis a graphG = (Q, E) with the same assump-
tions as for MDP, except that the partition ofQ is denoted(Q1, Q2) whereQ2 is the set
of player-2 states. Player 2 plays the role of an adversary to player 1. The notions of
play, strategies (in particular strategies for player2), and outcome are analogous to the
case of MDP (see [21] for standard definition of games).
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Objectives. An objectivefor an MDP M (or gameG) is a setφ ⊆ Ω of infinite
paths. Letp : Q → N be apriority functionandw : E → Z be aweight function3

where positive numbers represent rewards. We denote byW the largest weight (in ab-
solute value) according tow. Theenergy levelof a prefixγ = q0q1 . . . qn of a play is
EL(w, γ) =

∑n−1

i=0
w(qi, qi+1), and themean-payoff value4 of a playρ = q0q1 . . . is

MP(w, ρ) = lim infn→∞
1

n · EL(w, ρ(n)). In the sequel, when the weight functionw

is clear from the context we omit it and simply writeEL(γ) andMP(ρ). We denote by
Inf(ρ) the set of states that occur infinitely often inρ, and we consider the following
objectives:

– Parity objectives.The parity objectiveParity(p) = {ρ ∈ Ω | min{p(q) | q ∈
Inf(ρ)} is even} requires that the minimum priority visited infinitely oftenbe even.
The special cases ofBüchiandcoBüchiobjectives correspond to the case with two
priorities,p : Q → {0, 1} andp : Q → {1, 2} respectively.

– Energy objectives.Given an initial credit c0 ∈ N, the energy objective
PosEnergy(c0) = {ρ ∈ Ω | ∀n ≥ 0 : c0 + EL(ρ(n)) ≥ 0} requires that the
energy level be always positive.

– Mean-payoff objectives.Given a thresholdν ∈ Q, the mean-payoffobjective
MeanPayoff≥ν = {ρ ∈ Ω | MP(ρ) ≥ ν} (resp.MeanPayoff>ν = {ρ ∈ Ω |
MP(ρ) > ν}) requires that the mean-payoff value be at leastν (resp. strictly greater
thanν).

– Combined objectives.Theenergy parityobjectiveParity(p) ∩ PosEnergy(c0) and
themean-payoff parityobjectiveParity(p)∩MeanPayoff∼ν (for ∼∈ {≥, >}) com-
bine the requirements of parity and energy (resp., mean-payoff) objectives.

Almost-sure winning strategies.For MDPs, we say that a player-1 strategyσ is
almost-sure winningin a stateq for an objectiveφ if Pσ

q (φ) = 1. For two-player games,
we say that a player-1 strategyσ is winningin a stateq for an objectiveφ if all outcomes
of σ starting inq belong toφ. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it is (almost-sure) winning forsome
finite initial credit.

Decision problems.We are interested in the following problems. Given an MDPM

with weight functionw and priority functionp, and a stateq0:

– Theparity problemasks whether there exists an almost-sure winning strategy for
the parity objective fromq0.

– The mean-payoff problem (resp. mean-payoff parity problem)asks whether there
exists an almost-sure winning strategy for the mean-payoffobjective (resp. mean-
payoff parity objective) with threshold0 from q0. Note that it is not restrictive to
consider mean-payoff objectives with threshold0 because for∼∈ {≥, >}, we have
MP(w, ρ) ∼ ν iff MP(w − ν, ρ) ∼ 0, wherew − ν is the weight function that
assignsw(e) − ν to each edgee ∈ E.

3 Sometimes we take the freedom to use rational weights (i.e.,w : E → Q), while we always
assume that weights are integers encoded in binary for complexity results.

4 The results of this paper hold for the definition of mean-payoff value usinglim sup instead of
lim inf.
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– Theenergy problem (resp. energy parity problem)asks whether there exists a finite
initial credit c0 ∈ N and an almost-sure winning strategy for the energy objective
(resp. energy parity objective) fromq0 with initial creditc0.
The two-player game versions of these problems are defined analogously, and in

two player games we are interested in the existence of winning strategies as compared
to almost-sure winning strategies.

3 Games

In this section we summarize the results of games with all theobjectives defined in
the previous section. We first present the results for parity, mean-payoff and energy
objectives, and then present the results for combined objectives.

3.1 Games with parity, mean-payoff, and energy objectives

In games with parity, mean-payoff, and energy objectives, memoryless winning strate-
gies exist for both players. The result for parity objectives was established in [14] (also
see [23]); for mean-payoff objectives it was shown in [18] (also see [13]); and for en-
ergy objectives it follows from [4]. The existence of memoryless optimal strategies, and
the fact that the one-player version of the problems can be solved in polynomial time
shows that the problems can be decided in NP∩ coNP. For polynomial time algorithms
for the one-player games, see [17] for parity objectives, [16] for mean-payoff objec-
tives, and [4] for energy objectives. A major open question in this area of research is
whether games with parity, mean-payoff, and energy objective can be solved in polyno-
mial time. There is a close connection between mean-payoff and energy games, and the
equivalence of the decision problems has been established in [2]. The main argument
is as follows: by existence of memoryless strategies it follows that if the answer to the
mean-payoff objectives with thresholdν = 0 is true, then player 1 can fix a memory-
less strategies such that in all cycles the sum of the rewardsis non-negative, and this
exactly coincides with the finite initial credit problem (where after a prefix, the sum
of the rewards in cycles is non-negative). The results are summarized in the following
theorem.

Theorem 1. Memoryless winning strategies exist for both players in two-player games
with parity, mean-payoff, and energy objectives, and the decision problems lie in NP∩
coNP.

3.2 Games with mean-payoff parity and energy parity objectives

Mean-payoff parity games were first studied in [9] and it was shown that winning strate-
gies for player 1 require infinite memory in general. It follows from the results of [9] that
memoryless winning strategies exist for player 2. In [5] games with energy parity ob-
jectives were studied and the following results were established: (1) winning strategies
for player 1 with energy parity objectives require memory atleast2 · (|Q| − 1) ·W + 1
and memory of size4 · |Q| · d · W is sufficient; (2) memoryless winning strategies
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exist for player 2; and (3) the decision problem lie in NP∩ coNP. It was also shown
in [5] that the decision problem for mean-payoff parity objectives can be reduced to the
decision problem for energy parity objectives, however, aswinning strategies require
infinite memory for mean-payoff parity objectives, the reduction is more involved than
the reduction from mean-payoff to energy objectives. As a consequence it also follows
that the decision problem for mean-payoff parity objectives lie in NP∩ coNP.

Theorem 2. In games with mean-payoff parity objectives, winning strategies for
player 1 (with mean-payoff parity objective) require infinite memory in general, and
memoryless winning strategies exist for player 2. In games with energy parity objec-
tives, winning strategies for player 1 (with energy parity objective) require2 · (|Q| −
1) · W + 1 memory in general and memory of size4 · |Q| · d · |W | is sufficient, and
memoryless winning strategies exist for player 2. The problems of deciding the winner
in games with mean-payoff parity and games with energy parity objectives lie in NP∩
coNP.

4 Markov decision process

In this section we summarize the results for Markov decisionprocesses (MDPs).

4.1 MDPs with parity, mean-payoff and energy objectives

As in the case of games, in MDPs memoryless almost-sure winning strategies exist
for parity, mean-payoff and energy objectives. The result of existence of memoryless
almost-sure winning strategies for MDPs with parity objectives follows from [12] (also
see [10] for explicit proofs). The result of existence of memoryless almost-sure winning
strategies for mean-payoff objectives follows from the result of [18] (also see [15, 19]
for details of MDPs with mean-payoff objectives). Almost-sure winning in MDPs with
energy objective is equivalent to a two-player energy game (where the probabilistic
states are controlled by player2). Indeed(1) a winning strategy in the game is trivially
almost-sure winning in the MDP, and(2) if an almost-sure winning strategyσ in the
MDP was not winning in the game, then for all initial creditc0 there would exist an out-
comeρ of σ such thatc0 + EL(ρ(i)) < 0 for some positioni ≥ 0. The prefixρ(i) has a
positive probability in the MDP, in contradiction with the fact thatσ is almost-sure win-
ning. As a consequence, it follows that memoryless almost-sure winning strategies exist
for MDPs with energy objectives, and it also follows that solving MDPs with energy
objectives is as hard as games with energy as well as games with mean-payoff objec-
tive. The results of [10] give a polynomial-time algorithm to solve almost-sure winning
for MDPs with parity objective. For MDPs with mean-payoff objective, the almost-
sure winning problem can be solved through linear programming (see [15, 19] for a
linear program formulation to solve MDPs with mean-payoff objective). The problem
of MDPs with energy objective lies in NP∩ coNP due to the equivalence with games
with energy objective.

Theorem 3. Memoryless almost-sure winning strategies exist in MDPs with parity,
mean-payoff and energy objectives. The decision problems of existence of almost-sure
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winning strategy can be solved in polynomial time for mean-payoff and parity objec-
tives, and for energy objectives it belongs to NP∩ coNP.

4.2 MDPs with mean-payoff parity and energy parity objectives

MDPs with mean-payoff parity and energy parity objectives were considered in [6],
and the following results were established. For mean-payoff parity objectives, almost-
sure winning strategies require infinite memory in general,and the set of almost-sure
winning states can be computed in polynomial time. For energy parity objectives, a
polynomial time reduction was presented to games with energy Büchi objectives (parity
objectives with two priorities), and it follows that the decision problem belongs to NP
∩ coNP.

Theorem 4. In MDPs with mean-payoff parity objectives, almost-sure winning strate-
gies require infinite memory in general. In MDPs with energy parity objectives, almost-
sure winning strategies require2 · (|Q| − 1) · W + 1 memory in general and memory
of size2 · |Q| · |W | is sufficient. The set of almost-sure winning states can be computed
in polynomial time for mean-payoff parity objectives. The decision problem of whether
a state is almost-sure winning lies in NP∩ coNP for energy parity objectives.

4.3 New result: Improved algorithm for mean-payoff parity objectives

In this section we present an improved polynomial-time algorithm for the computation
of the set of almost-sure winning states for mean-payoff parity objectives, using the
results of [6] and hierarchical graph decomposition technique. We first define the basic
notion of end-component for MDPs.

End-components.A setU ⊆ Q is δ-closedif for all q ∈ U∩QP we haveSupp(δ(q)) ⊆
U . The sub-MDP induced by aδ-closed setU is M ↾ U = (U, E ∩ (U × U), δ). Note
that M ↾ U is an MDP if for all q ∈ U there existsq′ ∈ U such that(q, q′) ∈ E.
A closed recurrent setfor a Markov chain is aδ-closed setU ⊆ Q which is strongly
connected. End-components in MDPs play a role equivalent toclosed recurrent sets in
Markov chains. Given an MDPM = (Q, E, δ) with partition(Q1, QP ), a setU ⊆ Q

of states is anend-componentif U is δ-closed and the sub-MDPM ↾ U is strongly
connected [11, 12]. We denote byE(M) the set of end-components of an MDPM .

End-component lemma.We now present an important lemma about end-components
from [11, 12] that we use in the proofs of our result. It statesthat for arbitrary strategies
(memoryless or not), with probability 1 the set of states visited infinitely often along a
play is an end-component. This lemma allows us to derive conclusions on the (infinite)
set of plays in an MDP by analyzing the (finite) set of end-components in the MDP.

Lemma 1 ([11, 12]).Given an MDPM , for all statesq ∈ Q and all strategiesσ ∈ Σ,
we havePσ

q ({ω | Inf(ω) ∈ E(M)}) = 1.

We now present the key lemma from [6] where it was shown that for an MDP that
is an end-component such that the minimum priority is even, the mean-payoff parity
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objectiveParity(p)∩MeanPayoff≥ν is satisfied with probability 1 if the expected mean-
payoff value is at leastν at some state (the result also holds for strict inequality).In other
words, from the expected mean-payoff value of at leastν we ensure that both the mean-
payoff and parity objective is satisfied with probability 1 from all states. For a stateq,
let ValMP(w)(q) = supσ∈Σ Eσ

q [MP(w)] denote the expected mean-payoff value. The
following lemma was established in [6].

Lemma 2 ([6]). Consider an MDPM with state spaceQ, a priority function p,
and weight functionw such that (a)M is an end-component (i.e.,Q is an end-
component) and (b) the smallest priority inQ is even. If there is a stateq ∈ Q such
that ValMP(w)(q) ≥ ν (resp.ValMP(w)(q) > ν), then there exists a strategyσ∗

such that for all statesq ∈ Q we havePσ∗

q (Parity(p) ∩ MeanPayoff≥ν) = 1 (resp.

Pσ∗

q (Parity(p) ∩ MeanPayoff>ν) = 1).

Winning end-component. Given an MDP M with a parity objectiveParity(p)
and a mean-payoff objectiveMeanPayoff≥ν for a weight functionw, we call an
end-componentU winning if (a) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at leastν in the sub-MDP induced byU , i.e.,
maxq∈U ValMP(w)(q) ≥ ν in the sub-MDP induced byU . We denote byW the set
of winning end-components, and letWin =

⋃
U∈W U be the union of the winning

end-components.

Reduction to reachability of winning end-component.By Lemma 2 it follows that in
every winning end-component the mean-payoff parity objective is satisfied with proba-
bility 1. Conversely, consider an end-componentU that is not winning, then either the
smallest priority is odd, or the maximal expected mean-payoff value that can be ensured
for any state inU by staying inU is less thanν. Hence if only states inU are visited
infinitely often, then with probability 1 (i) either the parity objective is not satisfied, or
(ii) the mean-payoff objective is not satisfied. In other words, if an end-component that
is not winning is visited infinitely often, then the mean-payoff parity objective is satis-
fied with probability 0. It follows that the almost-sure winning states can be computed
by computing the set of almost-sure winning states for reachability objectives with the
winning end-components as the target set (i.e., computing almost-sure reachability to
the setWin). Since almost-sure winning states for MDPs with reachability objectives
can be computed in polynomial time [10], it suffices to present a polynomial-time algo-
rithm to computeWin in order to obtain a polynomial-time algorithm for MDPs with
mean-payoff parity objectives.

Computing winning end-components. The computation of the winning end-
components is done iteratively by computing winning end-components with smallest
priority 0, then winning end-components with smallest priority 2, and so on. The com-
putation ofWin is as follows:

– Fori ≥ 0, letW2i be the set of maximal end-componentsU with states with priority
at least2i and that contain at least one state with priority2i, i.e.,U contains only
states with priority at least2i, and contains at least one state with priority2i. Let
W ′

2i ⊆ W2i be the set of maximal end-componentsU ∈ W2i such that there is a
stateq ∈ U such that the expected mean-payoff value in the sub-MDP restricted to
U is at leastν. Let Win2i =

⋃
U∈W′

2i

U .
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The setWin =
⋃⌊d/2⌋

i=0
Win2i is the union of the states of the winning end-components

(formal pseudo-code in [7]).

Complexity of computing winning end-components.The winning end-component
algorithm runs forO(d) iterations and in each iteration requires to compute a maximal
end-component decomposition (mec) and compute mean-payoff values of at mostn
end-components, wheren is the number of states of the MDP. We now improve the
O(d) iterations toO(log d) using the hierarchical clustering technique of Tarjan [20].

Given a priority functionp : Q → {0, 1, . . . , 2d}, for 0 ≤ m ≤ d, let Q≤m =
{q ∈ Q | p(q) ≤ m} denote the set of states with priority at mostm. Given an
MDP M , let Mi denote the MDP obtained by removingAttrR(Q≤2i−1) the set of
states with priority less than2i and its random attractor (random attractor denotes the
probabilistic alternating reachability, for formal definition of random attractor see [8]).
A mecC is awinning mec in Mi if there existsu ∈ C such thatp(u) = 2i and there
is some statev ∈ C such that the expected mean-payoff value ofv is greater than the
given thresholdν. Let WEi be the union of the vertices of winning mec inMi, and let
WE = ∪0≤i≤dWEi.

Informal description of the new algorithm. If two statesu, v belong to the same
mec inMi, they also belong to the same mec inMi−1. Thus the mec’s ofMi refine
the ones ofMi−1, which can be exploited using the hierarchical clustering technique.
Formally, we will computeWE by the recursive procedure WINMAX EC(M, p, i, j).
The procedure takes an MDP, and two indicesi and j, and outputs

⋃
i≤2k≤j WE2k.

To obtainWE we invoke WINMAX EC(M, p, 0, 2d). Given the MDPM , and indices
i, j, the procedure first computes the mec’s ofMm, wherem = ⌈ i+j

2
⌉. If m is

even, then the setWEm of Mm is computed. Then we recursively call the procedures
WINMAX EC(Mu, p, m+1, j) and WINMAX EC(Mℓ, p, i, m−1), whereMu is a sub-
MDP containing only the edgesinsidethe mec’s ofMm and the MDPMℓ is obtained
by collapsing each mec inMm to a single vertex, thus containing only edgesoutside
the mec’s ofMm. The formal description of the algorithm is identical to thealgorithm
of Section 5 of [8] for almost-sure winning of MDPs with parity objectives, and the
only change is while determining whether an end-component is winning along with
the priority being even, we also check whether there is some state where the expected
mean-payoff value is at least the given threshold. The correctness argument is essen-
tially similar to the correctness of [8], and shows thatWin = WE.

Running time analysis.Given a MDPM with n states,m edges and a parity objective
with d priorities, let us denote byT (m, n, d) the running time of WINMAX EC onM .
We observe that inEu consists of edges with in mec’s, and such edges are not present
in Eℓ. Thus we obtain the following recurrence relation for the running timeT (m, n, d)
of WINMAX EC:

T (m, n, d) = TM (m, n) + T (mu, n, ⌊
d − 1

2
⌋)

+T (mℓ, n, ⌈
d − 1

2
⌉),

with mℓ +mu ≤ m, andTM (m, n) denotes the time complexity of mec decomposition
and MDPs with mean-payoff solving withm edges andn states. It is straightforward to
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show thatT (m, n, d) = O((MAX EC(n, m) + MEANPAYOFFSOLVE(n, m)) · log(d)),
where MAX EC and MEANPAYOFFSOLVE denote algorithms for computing the max-
imal end-component decomposition of an MDP and solving MDPswith mean-payoff
objectives, respectively. Thus we obtain an improved algorithm to solve MDPs with
mean-payoff parity objectives.

5 Conclusion

In this paper we summarized the main results of games and MDPswith parity, mean-
payoff, energy, mean-payoff parity, and energy parity objectives. The major open ques-
tions are whether games with parity, mean-payoff, and energy objective can be solved
in polynomial time.
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