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Abstract. In this paper we survey results of two-player games on graipics
Markov decision processes with parity, mean-payoff andgnebjectives, and
the combination of mean-payoff and energy objectives wititp objectives.
These problems have applications in verification and swmhef reactive sys-
tems in resource-constrained environments.

1 Introduction

Two-player games on graphs and Markov decision processe®gyare standard mod-
els for reactive systems. In the analysis of reactive systéme problem may specify a
goal as a set of desired traces (suchvagsgular specifications), or as a quantitative op-
timization objective for a payoff function on the traces.edntassical example of quan-
titative objective is the mean-payoff objective [15, 19¢dently, the energy objectives
(corresponding to total-payoff functions) have also beensiered in the design of
resource-constrained embedded systems such as powedisyistems [2, 5], as well
as in queueing processes, and gambling models (see alsnd3kferences therein).
The energy objective requires that the sum of the rewardsn@g/a nonnegative along
a trace. Energy objectives can be expressed in the settingurfdaryless one-counter
systems [3]. In recent times, games and MDPs equipped witcdmbination of a
parity objective (which is a canonical way to expressdheegular conditions [21]),
and a quantitative objective specified as either mean-payaergy condition have
been considered [9, 5, 6]. Such combination of quantitatihetqualitative objectives is
crucial in the design of reactive systems with both resoomestraints and functional
requirements [4, 9, 2, 1]. Also the energy parity objectie@ be viewed as a natural
extension of boundaryless one-counter systems with fegroenditions.

In this paper we summarize the main results about MDPs ancgavith parity,
mean-payoff, energy, mean-payoff parity, and energyyahfectives. We also present
an improved algorithm to solve MDPs with mean-payoff paoibjectives.

2 Definitions

Probability distributions. A probability distributionover a finite setd is a function
k:A—[0,1] suchtha®’ ., x(a) = 1. Thesupportof « is the seSupp(x) = {a €
A | k(a) > 0}. We denote byD(A) the set of probability distributions aA.

* This work was partially supported by FWF NFN Grant S1140BNRISE) and a Microsoft
faculty fellowship.



Markov Decision ProcessesA Markov Decision ProcesdViDP) M = (Q, E, §) con-
sists of a finite sef) of states partitioned intplayer-1 states?); andprobabilistic states
Qp(ie.,Q =Q:UQpandQ; NQp = 0), asetE C Q x Q of edges such that for
all ¢ € Q, there exists (at least ong) € @ such thafq,¢’) € E, and a probabilistic
transition functiony : Qp — D(Q) such that for allf € Qp andq’ € Q, we have
(q,q") € Eiff 6(q)(¢) > 0. We often writed(q, ¢’) for §(q)(q’). For a state € Q, we
denote byE(q) = {¢' € Q | (¢,¢’) € E} the set of possible successorg;oA Markov
chainis a special case of MDP whefg = 0.

Plays.An MDP can be viewed as the arena of a game played for infirmtalgy rounds
from a statey, € @ as follows. If the game is in a playérstateg, then playet chooses
a successor state from the #ly); otherwise the game is in a probabilistic statend
the successor is chosen according to the probability bigtdnd(¢). This game results
in a play from ¢, i.e., an infinite pattp = goq1 ... such that(¢;, ¢;11) € F for all

i > 0. The prefix of length of p is denoted by(n) = qo . . . ¢», the last state gb(n)
is Last(p(n)) = q,. We write 2 for the set of all plays.

Strategies.A strategy(for player1) is a functions : Q*Q; — @ such that for all
pE€Q* qeQ,andy € Qp,if o(p-q) = ¢',then(q, q') € E. We denote by the set
of all strategies. Aroutcomeof o from ¢ is a playgoq: - .. whereg;11 = o(qo - - - ¢;)
for all ¢ > 0 such thay; € Q1.

Outcomes and measuresOnce a starting statg€ @ and a strategy € X are fixed,
the outcome of the game is a random wafkfor which the probabilities of evergvent
A C 2, which is a measurable set of plays, are uniquely defined 222]a stateg € Q
and an eventd C (2, we denote byP7 (A) the probability that a play belongs 4 if
the game starts from the statend playerl follows the strategy. For a measurable
function f : 2 — R we denote byE7[f] the expectatiorof the functionf under the
probability measuréy (-).

Finite-memory strategies.A strategy usedinite-memonyif it can be encoded by a
deterministic transducéMem, mg, a,, ) whereMem is a finite set (the memory of
the strategy)mo € Mem is the initial memory valueg,, : Mem x Q — Mem is an
update function, and,, : Mem x Q1 — @ is a next-move function. Thsizeof the
strategy is the numbékem| of memory values. If the current state is a playestateg,
andm is the current memory value, then the strategy chooses #istate;’ according
to o, (m, q). If the current state ig, then the memory is updateddg, (m, ¢). Formally,
(Mem, myg, au,, v, ) defines the strategy such that (p - q) = a, (G, (Mo, p), ¢) for all

p € Q*andqg € @1, wherea,, extendsy,, to sequences of states as expected. A strategy
is memorylesg |Mem| = 1, and a memoryless strategy ;1 — @ chooses one edge
for every player 1 state. For a finite-memory strategy/, denote the Markov chain
obtained as the product 8f with the transducer defining.

Two-player gamesA two-player gamés a graphG = (@, E) with the same assump-
tions as for MDP, except that the partition@fis denoted @+, Q=) whereQ), is the set

of player2 states Player 2 plays the role of an adversary to player 1. The netaf
play, strategies (in particular strategies for pladgrand outcome are analogous to the
case of MDP (see [21] for standard definition of games).



Objectives. An objectivefor an MDP M (or gameG) is a set¢p C (2 of infinite
paths. Letp : Q — N be apriority functionandw : E — Z be aweight functiod
where positive numbers represent rewards. We denoi#’ ltlge largest weight (in ab-
solute value) according te. Theenergy levebf a prefixy = ¢oq; - . . ¢, Of a play is
EL(w,v) = Z?;Ol w(gi, ¢i+1), and themean-payoff valdeof a playp = qoq; ... is
MP(w, p) = liminf, . 1 - EL(w, p(n)). In the sequel, when the weight functian
is clear from the context we omit it and simply wriit(~) andMP(p). We denote by
Inf(p) the set of states that occur infinitely oftendnand we consider the following
objectives:

— Parity objectivesThe parity objectiveParity(p) = {p € 2 | min{p(q) | ¢ €
Inf(p)} is even} requires that the minimum priority visited infinitely oftee even.
The special cases &lichiandcoBlichiobjectives correspond to the case with two
priorities,p : Q@ — {0,1} andp : @ — {1, 2} respectively.

— Energy objectives.Given an initial creditcy € N, the energy objective
PosEnergy(co) = {p € 2 | ¥n > 0 : ¢y + EL(p(n)) > 0} requires that the
energy level be always positive.

— Mean-payoff objectivesGiven a thresholdr € Q, the mean-payoffobjective
MeanPayoff=" = {p € 2 | MP(p) > v} (resp.MeanPayoff”” = {p € 2 |
MP(p) > v}) requires that the mean-payoff value be at legsesp. strictly greater
thanv).

— Combined objective§he energy parityobjectiveParity(p) N PosEnergy(cy) and
themean-payoff paritpbjectiveParity (p) "\MeanPayoff~” (for ~€ {>, >}) com-
bine the requirements of parity and energy (resp., meaoff)apjectives.

Almost-sure winning strategies.For MDPs, we say that a playérstrategyo is
almost-sure winningn a state; for an objectives if P7(¢) = 1. For two-player games,
we say that a playet-strategy is winningin a state; for an objectives if all outcomes

of o starting ing belong to¢. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it isn@st-sure) winning fosome
finite initial credit.

Decision problems.We are interested in the following problems. Given an MDP
with weight functionw and priority functiorp, and a stat@y:

— The parity problemasks whether there exists an almost-sure winning stratagy f
the parity objective frong.

— The mean-payoff problem (resp. mean-payoff parity problasks whether there
exists an almost-sure winning strategy for the mean-payg#ctive (resp. mean-
payoff parity objective) with threshold from go. Note that it is not restrictive to
consider mean-payoff objectives with threshdllecause for-c {>, >}, we have
MP(w, p) ~ v iff MP(w — v, p) ~ 0, wherew — v is the weight function that
assignav(e) — v to each edge € E.

3 Sometimes we take the freedom to use rational weights ¢i.e.F — Q), while we always
assume that weights are integers encoded in binary for exitypkesults.

4 The results of this paper hold for the definition of mean-fiayalue usinglim sup instead of
lim inf.



— Theenergy problem (resp. energy parity probleasks whether there exists a finite
initial creditcy € N and an almost-sure winning strategy for the energy objectiv
(resp. energy parity objective) frogg with initial creditcg.

The two-player game versions of these problems are defin@ldgously, and in
two player games we are interested in the existence of winstirmtegies as compared
to almost-sure winning strategies.

3 Games

In this section we summarize the results of games with allofhjectives defined in
the previous section. We first present the results for parmgan-payoff and energy
objectives, and then present the results for combined thgsc

3.1 Games with parity, mean-payoff, and energy objectives

In games with parity, mean-payoff, and energy objectivesnoryless winning strate-
gies exist for both players. The result for parity objectiveas established in [14] (also
see [23]); for mean-payoff objectives it was shown in [18%dasee [13]); and for en-
ergy objectives it follows from [4]. The existence of memless optimal strategies, and
the fact that the one-player version of the problems can tvedan polynomial time
shows that the problems can be decided inNENP. For polynomial time algorithms
for the one-player games, see [17] for parity objective6] fbr mean-payoff objec-
tives, and [4] for energy objectives. A major open questioithis area of research is
whether games with parity, mean-payoff, and energy oljectn be solved in polyno-
mial time. There is a close connection between mean-paydféaergy games, and the
equivalence of the decision problems has been establishi@. iThe main argument
is as follows: by existence of memoryless strategies ibfedl that if the answer to the
mean-payoff objectives with threshald= 0 is true, then player 1 can fix a memory-
less strategies such that in all cycles the sum of the rewandsn-negative, and this
exactly coincides with the finite initial credit problem (este after a prefix, the sum
of the rewards in cycles is non-negative). The results amensarized in the following
theorem.

Theorem 1. Memoryless winning strategies exist for both players inplayer games
with parity, mean-payoff, and energy objectives, and tteésiten problems lie in N
coNP.

3.2 Games with mean-payoff parity and energy parity objecties

Mean-payoff parity games were first studied in [9] and it wasven that winning strate-
gies for player 1 require infinite memory in general. It fel®from the results of [9] that
memoryless winning strategies exist for player 2. In [5] garwith energy parity ob-
jectives were studied and the following results were eithét: (1) winning strategies
for player 1 with energy parity objectives require memorieast2 - (|Q| —1)- W +1
and memory of sizel - |Q| - d - W is sufficient; (2) memoryless winning strategies



exist for player 2; and (3) the decision problem lie in NRREONP. It was also shown

in [5] that the decision problem for mean-payoff parity altiges can be reduced to the
decision problem for energy parity objectives, howevenvaming strategies require

infinite memory for mean-payoff parity objectives, the retilon is more involved than

the reduction from mean-payoff to energy objectives. Asrasequence it also follows

that the decision problem for mean-payoff parity objecilie in NPN coNP.

Theorem 2. In games with mean-payoff parity objectives, winning styas for
player 1 (with mean-payoff parity objective) require infenmemory in general, and
memoryless winning strategies exist for player 2. In gamiés energy parity objec-
tives, winning strategies for player 1 (with energy paritjextive) require2 - (|Q| —
1) - W 4+ 1 memory in general and memory of size|Q| - d - |IW| is sufficient, and
memoryless winning strategies exist for player 2. The goisl of deciding the winner
in games with mean-payoff parity and games with energyyabjectives lie in NF
CcoNP.

4 Markov decision process

In this section we summarize the results for Markov decigimtesses (MDPSs).

4.1 MDPs with parity, mean-payoff and energy objectives

As in the case of games, in MDPs memoryless almost-sure mgnstrategies exist
for parity, mean-payoff and energy objectives. The resuiéxistence of memoryless
almost-sure winning strategies for MDPs with parity ohijexs follows from [12] (also
see [10] for explicit proofs). The result of existence of noeptess almost-sure winning
strategies for mean-payoff objectives follows from theutesf [18] (also see [15, 19]
for details of MDPs with mean-payoff objectives). AlImosita winning in MDPs with
energy objective is equivalent to a two-player energy gawleefe the probabilistic
states are controlled by play®). Indeed(1) a winning strategy in the game is trivially
almost-sure winning in the MDP, an@) if an almost-sure winning strategyin the
MDP was not winning in the game, then for all initial cregjtthere would exist an out-
comep of o such thaty + EL(p(i)) < 0 for some positiori > 0. The prefixo(i) has a
positive probability in the MDP, in contradiction with thadt thats is almost-sure win-
ning. As a consequence, it follows that memoryless almas#\winning strategies exist
for MDPs with energy objectives, and it also follows thatvao) MDPs with energy
objectives is as hard as games with energy as well as gamesn&an-payoff objec-
tive. The results of [10] give a polynomial-time algorithmdolve almost-sure winning
for MDPs with parity objective. For MDPs with mean-payoffjettive, the almost-
sure winning problem can be solved through linear programgnigee [15, 19] for a
linear program formulation to solve MDPs with mean-paydidfeztive). The problem
of MDPs with energy objective lies in NR coNP due to the equivalence with games
with energy objective.

Theorem 3. Memoryless almost-sure winning strategies exist in MDP arity,
mean-payoff and energy objectives. The decision problémsistence of almost-sure



winning strategy can be solved in polynomial time for meaxgff and parity objec-
tives, and for energy objectives it belongs to NIEoNP.

4.2 MDPs with mean-payoff parity and energy parity objectives

MDPs with mean-payoff parity and energy parity objectivesrevconsidered in [6],
and the following results were established. For mean-ggaoity objectives, almost-
sure winning strategies require infinite memory in genexadl the set of almost-sure
winning states can be computed in polynomial time. For gneayity objectives, a
polynomial time reduction was presented to games with grigiighi objectives (parity
objectives with two priorities), and it follows that the dgion problem belongs to NP
N coNP.

Theorem 4. In MDPs with mean-payoff parity objectives, almost-surening strate-
gies require infinite memory in general. In MDPs with energyity objectives, almost-
sure winning strategies requiz- (|Q| — 1) - W + 1 memory in general and memory
of size2 - |Q| - |W] is sufficient. The set of almost-sure winning states can bgated
in polynomial time for mean-payoff parity objectives. Tleeidion problem of whether
a state is almost-sure winning lies in NiPcoNP for energy parity objectives.

4.3 New result: Improved algorithm for mean-payoff parity objectives

In this section we present an improved polynomial-time athm for the computation
of the set of almost-sure winning states for mean-payofityabjectives, using the
results of [6] and hierarchical graph decomposition teghai We first define the basic
notion of end-component for MDPs.

End-componentsA setU C @ isé-closedf forall ¢ € UNQ p we haveSupp(d(g)) C
U. The sub-MDP induced by &closed setV is M [ U = (U,EN (U x U),¢). Note
that M | U is an MDP if for all¢ € U there existsy € U such that(q,q’) € E.
A closed recurrent sefor a Markov chain is a-closed set/ C @ which is strongly
connected. End-components in MDPs play a role equivalecibsed recurrent sets in
Markov chains. Given an MDR/ = (Q, E, ¢) with partition (Q1,Qp), a setU C @
of states is aend-componerit U is §-closed and the sub-MDPR/ | U is strongly
connected [11, 12]. We denote ByM) the set of end-components of an MDP.

End-component lemma.We now present an important lemma about end-components
from [11, 12] that we use in the proofs of our result. It stakes for arbitrary strategies
(memoryless or not), with probability 1 the set of stategte@ikinfinitely often along a
play is an end-component. This lemma allows us to derivelosiuns on the (infinite)

set of plays in an MDP by analyzing the (finite) set of end-cormgnts in the MDP.

Lemma 1l ([11,12]).Given an MDPM, for all statesg € @ and all strategies € X,
we havePy ({w | Inf(w) € E(M)}) = 1.

We now present the key lemma from [6] where it was shown thaafoMDP that
is an end-component such that the minimum priority is eviea,nhean-payoff parity



objectiveParity(p) "MeanPayoff=" is satisfied with probability 1 if the expected mean-
payoff value is at least at some state (the result also holds for strict inequalityther
words, from the expected mean-payoff value of at leage ensure that both the mean-
payoff and parity objective is satisfied with probabilityrbrn all states. For a statg

let ValMP(w)(q) = sup,x E7 [MP(w)] denote the expected mean-payoff value. The
following lemma was established in [6].

Lemma 2 ([6]). Consider an MDPM with state spacey, a priority function p,
and weight functionw such that (a)M is an end-component (i.e) is an end-
component) and (b) the smallest priority ¢ is even. If there is a state € @ such
that ValMP(w)(q) > v (resp.ValMP(w)(¢q) > v), then there exists a strategy*
such that for all stateg € Q we have]Pg*(Parity(p) N MeanPayoff=") = 1 (resp.

o* H >vy
Pg (Parity(p) N MeanPayoff~") = 1).

Winning end-component. Given an MDP M with a parity objectiveParity(p)
and a mean-payoff objectivMeanPayoff=" for a weight functionw, we call an
end-component winning if (&) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at leastin the sub-MDP induced by/, i.e.,
maxgep ValMP(w)(q) > v in the sub-MDP induced by/. We denote by the set
of winning end-components, and Iéin = J;.,, U be the union of the winning
end-components.

Reduction to reachability of winning end-componentBy Lemma 2 it follows that in
every winning end-component the mean-payoff parity objeés satisfied with proba-
bility 1. Conversely, consider an end-compong&rthat is not winning, then either the
smallest priority is odd, or the maximal expected mean-ffastue that can be ensured
for any state inJ by staying inU is less tharnv. Hence if only states iV are visited
infinitely often, then with probability 1 (i) either the pgriobjective is not satisfied, or
(ii) the mean-payoff objective is not satisfied. In other d&yrif an end-component that
is not winning is visited infinitely often, then the mean-p#yparity objective is satis-
fied with probability 0. It follows that the almost-sure wing states can be computed
by computing the set of almost-sure winning states for rahitity objectives with the
winning end-components as the target set (i.e., computngsd-sure reachability to
the setWin). Since almost-sure winning states for MDPs with reaclitgdobjectives
can be computed in polynomial time [10], it suffices to présgmolynomial-time algo-
rithm to computéNin in order to obtain a polynomial-time algorithm for MDPs with
mean-payoff parity objectives.

Computing winning end-components. The computation of the winning end-
components is done iteratively by computing winning endponents with smallest
priority O, then winning end-components with smallest ptyo2, and so on. The com-
putation ofWin is as follows:

— Fori > 0, letWs; be the set of maximal end-componetitwith states with priority
at least2; and that contain at least one state with priofityi.e., U contains only
states with priority at leasti, and contains at least one state with priofity Let
Wi, C Wy, be the set of maximal end-componebtss Ws,; such that there is a
stateq € U such that the expected mean-payoff value in the sub-MDFgtst to
U'is atleast. LetWing; = Uy ey, U-
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The setWin = U}i{fJ Wino; is the union of the states of the winning end-components
(formal pseudo-code in [7]).

Complexity of computing winning end-components.The winning end-component
algorithm runs forO(d) iterations and in each iteration requires to compute a malxim
end-component decomposition (mec) and compute mean{pealoks of at most
end-components, whereis the number of states of the MDP. We now improve the
O(d) iterations toO(log d) using the hierarchical clustering technique of Tarjan [20]
Given a priority functiorp : @ — {0,1,...,2d},for0 < m < d, letQ<,, =
{¢ € Q | p(¢) < m} denote the set of states with priority at mest Given an
MDP M, let M, denote the MDP obtained by removingtrz(Q<2;—1) the set of
states with priority less tha®i and its random attractor (random attractor denotes the
probabilistic alternating reachability, for formal defion of random attractor see [8]).
A mecC is awinning mecin M; if there existsu € C such thap(u) = 2i and there
is some state € C such that the expected mean-payoff value @ greater than the
given threshold . Let WE; be the union of the vertices of winning mecid;, and let
WE = UOSigdWEi-

Informal description of the new algorithm. If two statesu,v belong to the same
mec in M;, they also belong to the same meclify_;. Thus the mec’s of\/; refine
the ones ofM;_;, which can be exploited using the hierarchical clustergahhique.
Formally, we will computéWVE by the recursive procedure MMMAXEC(M, p, i, j).
The procedure takes an MDP, and two indi¢end j, and outputs J,,; . ; WEoy.
To obtainWE we invoke WNMAXEC(M, p, 0, 2d). Given the MDPM, and indices
i,J, the procedure first computes the mec’s Mf,,, wherem = [%1. If m is
even, then the s&VE,, of M, is computed. Then we recursively call the procedures
WINMAXEC(M,,,p,m+1,j) and WNMAXEC(My, p, i, m — 1), wherelM,, is a sub-
MDP containing only the edgéssidethe mec’s ofM,,, and the MDPM, is obtained
by collapsing each mec if/,, to a single vertex, thus containing only edgegside
the mec’s ofM,,,. The formal description of the algorithm is identical to tidgorithm

of Section 5 of [8] for almost-sure winning of MDPs with pagribbjectives, and the
only change is while determining whether an end-comporgemtinning along with
the priority being even, we also check whether there is sdate shere the expected
mean-payoff value is at least the given threshold. The coress argument is essen-
tially similar to the correctness of [8], and shows tiéh = WE.

Running time analysis.Given a MDPM with n statesin edges and a parity objective
with d priorities, let us denote by'(m, n, d) the running time of WMAXEC onM.
We observe that i, consists of edges with in mec’s, and such edges are not presen
in E,. Thus we obtain the following recurrence relation for thermmg timeT'(m, n, d)
of WINMAXEC:
d—1
T(m,n,d) = Tar(m,n) + T(my,n, LTJ)

(e, [451),

with mg +m, < m, andTy;(m,n) denotes the time complexity of mec decomposition
and MDPs with mean-payoff solving with edges and, states. It is straightforward to



show thatl'(m, n,d) = O((MAXEC(n, m) + MEANPAYOFFSOLVE(n, m)) - log(d)),
where MAX EC and MEANPAYOFFSOLVE denote algorithms for computing the max-
imal end-component decomposition of an MDP and solving MidRis mean-payoff
objectives, respectively. Thus we obtain an improved dtigor to solve MDPs with
mean-payoff parity objectives.

5 Conclusion

In this paper we summarized the main results of games and MtRgparity, mean-
payoff, energy, mean-payoff parity, and energy parity otijes. The major open ques-
tions are whether games with parity, mean-payoff, and gnaljective can be solved
in polynomial time.
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