Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6839))

Included in the following conference series:

  • 3485 Accesses

Abstract

This paper puts forward a useful method for step length adaptation of the mutation distribution in ES- using the GPC (Generalized Predictive Control) to adapt the global step size. Similar to the concept of evolution path, the mutation step is the function of historical information generated by the iterative processes of ES algorithm. In our method, the ES algorithm is regarded as a controlled system and modeled as a CARIMA (Controlled Auto Regressive Integrated Moving Average) model. The parameters of CARIMA model are estimated by RLS (the recursive least squares) with forgetting factor, and then the current global optimum step size (the control parameter) is calculated by the GPC to feed back to ES, the output and the control quantum are used to estimate the parameters of CARIMA model iteratively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liang, J.J., Qin, A.K., Suganthan, P.N., Basker, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodel Functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  2. Koumousis, V.K., Katsaras, C.P.: A Saw-tooth Genetic Algorithm Combining the Effects of Variable Population Size and Reinitialization to Enhance Performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  3. Ma, P.C.H., Chan, K.C.C., Yao, X., Chiu, D.K.Y.: An Evolutionary Clustering Algorithm for Gene Expression Microarray Data Analysis. IEEE Trans. Evol. Comput. 10(3), 296–314 (2006)

    Article  Google Scholar 

  4. Alba, E., Dorronsoro, B.: The Exploration/Exploitation Tradeoff in Dynamic Cellular Genetic Algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

    Article  Google Scholar 

  5. Leung, Y.W., Wang, Y.P.: An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization. IEEE Trans. Evol. Comput. 5(1), 41–53 (2001)

    Article  Google Scholar 

  6. Powel, M.J.D.: On Trust Region Methods for Unconstrained Optimization Without Derivatives. Dept. Appl. Math. Theoretical Phys., Univ. Cambridge, Cambridge, U.K., Work Rep. DAMTP 2002/NA02 (2002)

    Google Scholar 

  7. Lee, C.Y., Yao, X.: Evolutionary Programming Using Mutations Based on the Levy Probability Distribution. IEEE Trans. Evol. Comput. 8(1), 1–13 (2004)

    Article  Google Scholar 

  8. Wang, Y., Dang, C.: An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares. IEEE Trans. Evol. 11(5), 579–586 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, W., Liu, J. (2012). Step Length Adaptation by Generalized Predictive Control. In: Huang, DS., Gan, Y., Gupta, P., Gromiha, M.M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2011. Lecture Notes in Computer Science(), vol 6839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25944-9_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25944-9_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25943-2

  • Online ISBN: 978-3-642-25944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics