Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6839))

Included in the following conference series:

  • 3405 Accesses

Abstract

For the problem that a millimeter wave (MMW) image contains noise and behaves low resolution, a novel MMW image reconstruction method, combined the non-negative sparse coding shrinkage (NNSCS) technique and the partial differential equations (PDEs) algorithm (denoted by NNSCS+ PDEs), is proposed in this paper. The method of PDEs is an efficient image reconstruction technique and is easy to implement. However, MMW image is highly contaminated by much unknown noise, and the reconstruction result is not satisfied only using PDEs to process images. While the NNSCS only relies on the high-order statistical property of an image and is a self-adaptive image denoising method. Thus, combined the advantage of NNSCS and PDEs, the MMW image can be well restored. In test, a natural image is used to testify the validity of the NNSC+PDEs method, and the signal noise ratio (SNR) is used as the measure criterion of restored images. Compared with NNSCS and PDEs respectively, simulation results show that our method is indeed efficient in the task of reconstructing WWM images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Su, P.-G., Wang, Z.-X., Xu, Z.-Y.: Active MMW Focal Plane Imaging System. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS (LNAI), vol. 5755, pp. 875–881. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Gilles, A., Pierre, K.: Mathematical Problems in Image Processing. Springer, New York (2002)

    MATH  Google Scholar 

  3. Sundareshan, M.K., Bhattacharjee, S.: Superresolution of Passive Millimeter-wave Images Using A Combined Maximum-likelihood Optimization and Projection-onto-convex-sets Approach. In: Proc. of SPIE Conf. on Passive Millimeter-wave Imaging Technology, Acrosense 2001, vol. 4373, pp. 105–116 (2001)

    Google Scholar 

  4. Li, S.Z.: MAP Image Restoration and Segmentation by Constrained Optimization. IEEE Transactions on Image Processing 7(12), 1173–1730 (2002)

    Google Scholar 

  5. Gan, X.-C., Alan, W.C.L., Yan, H.: A POCS-based Constrained Total Least Squares Algorithm for Image Restoration. Journal of Visual Communication and Image Representation 17, 986–1003 (2006)

    Article  Google Scholar 

  6. Chen, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM Publisher, Philadelphia (2005)

    Book  Google Scholar 

  7. Liu, R.S., Lin, Z.-C., Zhang, W., Su, Z.: Learning PDEs for Image Restoration via Optimal Control. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 115–128. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Shang, L.: Non-negative Sparse Coding Shrinkage for Image Denoising Using Normal Inverse Gaussian Density Model. Image and Vision Computing 26(8), 1137–1147 (2008)

    Article  Google Scholar 

  9. Shang, L., Cao, F. W., Chen, J.: Denoising Natural Images Using Sparse Coding Algorithm Based on the Kurtosis Measurement. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W., et al. (eds.) ISNN 2008,, Part II. LNCS, vol. 5264, pp. 351–358. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Chang, S.G., Yu, B., Vetterli, M., et al.: Adaptive Wavelet Threshold for Image Denoising and Compression. IEEE Transaction on Image Processing 9(9), 1532–1546 (2009)

    Article  MATH  Google Scholar 

  11. Hoyer, P.O.: Modeling Receptive Fields with Non-negative Sparse Coding. Nerocomputing 52(54), 547–552 (2003)

    Article  Google Scholar 

  12. Hoyer, P.O.: Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 5, 1427–1469 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shang, L., Su, Pg. (2012). MMW Image Reconstruction Combined NNSC Shrinkage Technique and PDEs Algorithm. In: Huang, DS., Gan, Y., Gupta, P., Gromiha, M.M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2011. Lecture Notes in Computer Science(), vol 6839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25944-9_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25944-9_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25943-2

  • Online ISBN: 978-3-642-25944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics