Abstract
The knowledge of the protein functions is very important in the development of new drugs. Many experimental methods for determining protein function exist, but due to their complexity the number of protein structures with unknown functions is rapidly growing. So, there is an obvious necessity for development of computer methods for annotating protein structures. In this paper we present a fuzzy decision tree based method for protein active sites detection, which could be used for annotating protein structures. We extract several features of the amino acids, and then using different membership functions we build fuzzy decision trees in order to detect the possible active sites. We provide some experimental results of the evaluation of our method. Additionally, our method is compared with several existing methods for protein active sites detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Todd, A.E., Orengo, C.A., Thornton, J.M.: Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307(4), 1113–1143 (2001)
Kirac, M., Ozsoyoglul, G., Yang, J.: Annotating proteins by mining protein interaction networks. Bioinformatics 22(14), e260–e270 (2006)
Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Sys. Bio. 3, 88 (2007)
Panchenko, A.R., Kondrashov, F., Bryant, S.: Prediction of functional sites by analysis of sequence and structure conservation. Protein Science 13(4), 884–892 (2004)
Leibowitz, N., Fligelman, Z.Y., Nussinov, R., Wolfson, H.J.: Automated multiple structure alignment and detection of a common substructure motif. Proteins 43(3), 235–245 (2001)
Tuncbag, N., Kar, G., Keskin, O., Gursoy, A., Nussinov, R.: A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Briefings in Bioinformatics 10(3), 217–232 (2009)
Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F., Pawson, T., Hogue, C.W.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 29(1), 242–245 (2001)
Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–371 (1973)
Pintar, A., Carugo, O., Pongor, S.: DPX: for the analysis of the protein core. Bioinformatics 19(2), 313–314 (2003)
Pintar, A., Carugo, O., Pongor, S.: CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics 18(7), 980–984 (2002)
Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)
Jones, S., Thornton, J.M.: Analysis of protein-protein interaction sites using surface patches. J. Mol Biol. 272(1), 121–132 (1997)
Aytuna, A.S., Gursoy, A., Keskin, O.: Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21(2), 2850–2855 (2005)
Lawrence, M.C., Colman, P.M.: Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234(4), 946–950 (1993)
Neuvirth, H., Raz, R., Schreiber, G.: ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338(1), 181–199 (2004)
Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)
Murakami, Y., Jones, S.: SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics 22(14), 1794–1795 (2006)
Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R., Gursoy, A.: PRISM: protein interactions by structural matching. Nucleic. Acids. Res. 33(2), W331–W336 (2005)
Jones, S., Thornton, J.M.: Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272(1), 133–143 (1997)
Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 1–14 (1998)
Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)
Quinlan, R.J.: Decision trees and decision making. IEEE Transactions on Systems, Man, and Cybernetics 20(2), 339–346 (1990)
Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138(2), 221–254 (2003)
Suárez, A., Lutsko, J.F.: Globally optimal fuzzy decision trees for classification and regression. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1297–1311 (1999)
Wang, X., Chen, B., Olan, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets and Systems 112(1), 117–125 (2000)
Chen, Y.-L., Wang, T., Wang, B.-S., Li, Z.-J.: A Survey of Fuzzy Decision Tree Classifier. Fuzzy Information and Engineering 1(2), 149–159 (2009)
Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)
Chothia, C.: The Nature of the Accessible and Buried Surfaces in Proteins. J. Mol. Biol. 105(1), 1–12 (1976)
Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications, 1st edn. Prentice-Hall (1995)
Chandonia, J.-M., Hon, G., Walker, N.S., Conte, L.L., Koehl, P., Levitt, M., Brenner, S.E.: The ASTRAL Compendium in 2004. Nucleic Acids Res. 32, D189–D192 (2004)
Velankar, S., Best, C., Beuth, B., Boutselakis, C.H., Cobley, N., Sousa Da Silva, A.W., Dimitropoulos, D., Golovin, A., Hirshberg, M., John, M., Krissinel, E.B., Newman, R., Oldfield, T., Pajon, A., Penkett, C.J., Pineda-Castillo, J., Sahni, G., Sen, S., Slowley, R., Suarez-Uruena, A., Swaminathan, J., Van Ginkel, G., Vranken, W.F., Henrick, K., Kleywegt, G.J.: PDBe: Protein Data Bank in Europe. Nucleic Acids Research 38, D308–D317 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mirceva, G., Naumoski, A., Stojkovik, V., Temelkovski, D., Davcev, D. (2011). Method for Protein Active Sites Detection Based on Fuzzy Decision Trees. In: Kim, Th., et al. Database Theory and Application, Bio-Science and Bio-Technology. BSBT DTA 2011 2011. Communications in Computer and Information Science, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27157-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-27157-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27156-4
Online ISBN: 978-3-642-27157-1
eBook Packages: Computer ScienceComputer Science (R0)