Skip to main content

Method for Protein Active Sites Detection Based on Fuzzy Decision Trees

  • Conference paper
Database Theory and Application, Bio-Science and Bio-Technology (BSBT 2011, DTA 2011)

Abstract

The knowledge of the protein functions is very important in the development of new drugs. Many experimental methods for determining protein function exist, but due to their complexity the number of protein structures with unknown functions is rapidly growing. So, there is an obvious necessity for development of computer methods for annotating protein structures. In this paper we present a fuzzy decision tree based method for protein active sites detection, which could be used for annotating protein structures. We extract several features of the amino acids, and then using different membership functions we build fuzzy decision trees in order to detect the possible active sites. We provide some experimental results of the evaluation of our method. Additionally, our method is compared with several existing methods for protein active sites detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Todd, A.E., Orengo, C.A., Thornton, J.M.: Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307(4), 1113–1143 (2001)

    Article  Google Scholar 

  2. Kirac, M., Ozsoyoglul, G., Yang, J.: Annotating proteins by mining protein interaction networks. Bioinformatics 22(14), e260–e270 (2006)

    Article  Google Scholar 

  3. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Sys. Bio. 3, 88 (2007)

    Google Scholar 

  4. Panchenko, A.R., Kondrashov, F., Bryant, S.: Prediction of functional sites by analysis of sequence and structure conservation. Protein Science 13(4), 884–892 (2004)

    Article  Google Scholar 

  5. Leibowitz, N., Fligelman, Z.Y., Nussinov, R., Wolfson, H.J.: Automated multiple structure alignment and detection of a common substructure motif. Proteins 43(3), 235–245 (2001)

    Article  Google Scholar 

  6. Tuncbag, N., Kar, G., Keskin, O., Gursoy, A., Nussinov, R.: A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Briefings in Bioinformatics 10(3), 217–232 (2009)

    Article  Google Scholar 

  7. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F., Pawson, T., Hogue, C.W.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 29(1), 242–245 (2001)

    Article  Google Scholar 

  8. Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–371 (1973)

    Article  Google Scholar 

  9. Pintar, A., Carugo, O., Pongor, S.: DPX: for the analysis of the protein core. Bioinformatics 19(2), 313–314 (2003)

    Article  Google Scholar 

  10. Pintar, A., Carugo, O., Pongor, S.: CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics 18(7), 980–984 (2002)

    Article  Google Scholar 

  11. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  12. Jones, S., Thornton, J.M.: Analysis of protein-protein interaction sites using surface patches. J. Mol Biol. 272(1), 121–132 (1997)

    Article  Google Scholar 

  13. Aytuna, A.S., Gursoy, A., Keskin, O.: Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21(2), 2850–2855 (2005)

    Article  Google Scholar 

  14. Lawrence, M.C., Colman, P.M.: Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234(4), 946–950 (1993)

    Article  Google Scholar 

  15. Neuvirth, H., Raz, R., Schreiber, G.: ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338(1), 181–199 (2004)

    Article  Google Scholar 

  16. Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)

    Article  Google Scholar 

  17. Murakami, Y., Jones, S.: SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics 22(14), 1794–1795 (2006)

    Article  Google Scholar 

  18. Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R., Gursoy, A.: PRISM: protein interactions by structural matching. Nucleic. Acids. Res. 33(2), W331–W336 (2005)

    Article  Google Scholar 

  19. Jones, S., Thornton, J.M.: Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272(1), 133–143 (1997)

    Article  Google Scholar 

  20. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 1–14 (1998)

    Article  Google Scholar 

  21. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  22. Quinlan, R.J.: Decision trees and decision making. IEEE Transactions on Systems, Man, and Cybernetics 20(2), 339–346 (1990)

    Article  Google Scholar 

  23. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138(2), 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  24. Suárez, A., Lutsko, J.F.: Globally optimal fuzzy decision trees for classification and regression. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1297–1311 (1999)

    Article  Google Scholar 

  25. Wang, X., Chen, B., Olan, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets and Systems 112(1), 117–125 (2000)

    Article  MathSciNet  Google Scholar 

  26. Chen, Y.-L., Wang, T., Wang, B.-S., Li, Z.-J.: A Survey of Fuzzy Decision Tree Classifier. Fuzzy Information and Engineering 1(2), 149–159 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    Article  Google Scholar 

  28. Chothia, C.: The Nature of the Accessible and Buried Surfaces in Proteins. J. Mol. Biol. 105(1), 1–12 (1976)

    Article  Google Scholar 

  29. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications, 1st edn. Prentice-Hall (1995)

    Google Scholar 

  30. Chandonia, J.-M., Hon, G., Walker, N.S., Conte, L.L., Koehl, P., Levitt, M., Brenner, S.E.: The ASTRAL Compendium in 2004. Nucleic Acids Res. 32, D189–D192 (2004)

    Article  Google Scholar 

  31. Velankar, S., Best, C., Beuth, B., Boutselakis, C.H., Cobley, N., Sousa Da Silva, A.W., Dimitropoulos, D., Golovin, A., Hirshberg, M., John, M., Krissinel, E.B., Newman, R., Oldfield, T., Pajon, A., Penkett, C.J., Pineda-Castillo, J., Sahni, G., Sen, S., Slowley, R., Suarez-Uruena, A., Swaminathan, J., Van Ginkel, G., Vranken, W.F., Henrick, K., Kleywegt, G.J.: PDBe: Protein Data Bank in Europe. Nucleic Acids Research 38, D308–D317 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirceva, G., Naumoski, A., Stojkovik, V., Temelkovski, D., Davcev, D. (2011). Method for Protein Active Sites Detection Based on Fuzzy Decision Trees. In: Kim, Th., et al. Database Theory and Application, Bio-Science and Bio-Technology. BSBT DTA 2011 2011. Communications in Computer and Information Science, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27157-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27157-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27156-4

  • Online ISBN: 978-3-642-27157-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics