Abstract
As the volume of non-textual data, such images and other multimedia data, available on Internet is increasing. The issue of identifying data items based on query containment rather than query equality is becoming more and more important. In this paper, we propose a solution to this problem. We assume local descriptors are extracted from data items, so the aforementioned problem reduces to finding data items that share as many as possible local descriptors with the query. In particular, we define a new ε-intersection for this purpose. Local descriptors usually contain the location of the descriptors, so the proposed solution takes them into account to increase effectiveness of searching. We evaluate the ε-intersection on two real-life image collections using SIFT and SURF local descriptors from both effectiveness and efficiency points of view. Moreover, we study the influence of individual parameters of the ε-intersection to query results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Batko, M., Dohnal, V., Novak, D., Sedmidubsky, J.: MUFIN: A Multi-Feature Indexing Network. In: Proceedings of the 2nd International Conference on Similarity Search and Applications (SISAP 2009), pp. 158–159. IEEE Computer Society, Los Alamitos (2009)
Petrakis, E.G.M., Faloutsos, C.: Similarity searching in medical image databases. IEEE Trans. on Knowl. and Data Eng. 9, 435–447 (1997)
Brunner, R.J., Djorgovski, S.G., Prince, T.A., Szalay, A.S.: Massive datasets in astronomy, pp. 931–979. Kluwer Academic Publishers, Norwell (2002)
Hubálek, Z.: Coefficients of association and similarity, based on binary (presence-absence) data: An evaluation. Biological Reviews 57, 669–689 (1982)
Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy: The Principles and Practice of numeric Classification. W. H. Freeman and Company, San Francisco (1976)
Monev, V.: Introduction to similarity searching in chemistry. In: Match-Communications in Mathematical and in Computer Chemistry, vol. 51, pp. 7–38. Bulgarian Academy of Sciences (2004)
Flower, D.R.: On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 38, 379–386 (1998)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)
Jaccard, P.: Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 241–272 (1901)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach, vol. 32. Springer, Heidelberg (2006)
Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)
Ke, Y., Sukthankar, R., Huston, L., Ke, Y., Sukthankar, R.: Efficient near-duplicate detection and sub-image retrieval. In: ACM Multimedia, pp. 869–876 (2004)
Roth, G., Scott, W.: Efficient indexing for strongly similar subimage retrieval. In: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision (CRV 2007), pp. 440–447. IEEE Computer Society, Washington, DC, USA (2007)
Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2004), pp. 506–513. IEEE Computer Society, Los Alamitos (2004)
Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: Finding a (thick) needle in a haystack. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2009), pp. 17–24. IEEE Computer Society, Los Alamitos (2009)
Chum, O., Philbin, J., Isard, M., Zisserman, A.: Scalable near identical image and shot detection. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR 2007), pp. 549–556. ACM, New York (2007)
Joly, A., Buisson, O.: Logo retrieval with a contrario visual query expansion. In: Proceedings of the seventeen ACM International Conference on Multimedia (MM 2009), pp. 581–584. ACM, New York (2009)
Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB 2007), VLDB Endowment, pp. 950–961 (2007)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Ryu, M.S., Park, S.J., Won, C.S.: Image retrieval using sub-image matching in photos using MPEG-7 descriptors. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) AIRS 2005. LNCS, vol. 3689, pp. 366–373. Springer, Heidelberg (2005)
Zhang, W., Košecká, J.: Hierarchical building recognition. Image Vision Comput. 25, 704–716 (2007)
Hazen, T.J., Saenko, K., La, C.H., Glass, J.R.: A segment-based audio-visual speech recognizer: data collection, development, and initial experiments. In: Proceedings of the 6th International Conference on Multimodal Interfaces (ICMI 2004), pp. 235–242. ACM, New York (2004)
Santini, S., Jain, R.: Similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 871–883 (1999)
Batko, M., Novak, D., Zezula, P.: MESSIF: Metric similarity search implementation framework. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 1–10. Springer, Heidelberg (2007)
Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB 1997), pp. 426–435. Morgan Kaufmann, San Francisco (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Homola, T., Dohnal, V., Zezula, P. (2011). Proximity-Based Order-Respecting Intersection for Searching in Image Databases. In: Detyniecki, M., Knees, P., Nürnberger, A., Schedl, M., Stober, S. (eds) Adaptive Multimedia Retrieval. Context, Exploration, and Fusion. AMR 2010. Lecture Notes in Computer Science, vol 6817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27169-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-27169-4_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27168-7
Online ISBN: 978-3-642-27169-4
eBook Packages: Computer ScienceComputer Science (R0)