Skip to main content

Fast Reconstruction Technique for Medical Images Using Graphics Processing Unit

  • Conference paper
Signal Processing, Image Processing and Pattern Recognition (SIP 2011)

Abstract

In many medical imaging modalities, the Fast Fourier Transform (FFT) is being used for the reconstruction of images from acquired raw data. The objective of the paper is to develop FFT and Inverse FT algorithms to run under GPU for performing in much faster way. The GPU based FFT implementation provides much faster reconstruction of Medical images than CPU based implementation. The GPU based algorithm is developed in MATLAB environment. GPUMat is used to running CUFFT library code in MATLAB. This work exercises the acceleration of MRI reconstruction algorithm on NVIDIA’s GPU and Intel’s Core2 Duo based CPU. The reconstruction technique shows that GPU based MRI reconstruction achieved significant speedup compared to the CPUs for medical applications at a cheaper cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bockenbach, O., Knaup, M., Kachelrie, M.: Implementation of a cone-beam backprojection algorithm on the Cell Broadband Engine processor. In: SPIE Medical Imaging 2007: Physics of Medical Imaging (2007)

    Google Scholar 

  2. Mueller, K., Xu, F., Neophytou, N.: Why do commodity graphics hardware boards (GPUs) work so well for acceleration of computed tomography? In: SPIE Electronic Imaging 2007 (2007)

    Google Scholar 

  3. Mueller, K., Yagel, R.: Rapid 3-D cone-beam reconstruction with the simultaneous algebraic reconstruction technique (SART) using 2-D texture mapping hardware. IEEE Transactions on Medical Imaging 19, 1227–1237 (2000)

    Article  Google Scholar 

  4. Chidlow, K., Möller, T.: Rapid emission tomography reconstruction. In: Int’l Workshop on Volume Graphics (2003)

    Google Scholar 

  5. Xue, X., Cheryauka, A., Tubbs, D.: Acceleration of uro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: A simulation study. In: SPIE Medical Imaging (2006)

    Google Scholar 

  6. Virtual Imaging Laboratory, Department of Biomedical Engineering, Duke University, http://dukemil.bme.duke.edu/MRI/index.html

  7. Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging. A signal processing perspective. IEEE Press (2000)

    Google Scholar 

  8. Haacle, E.M., Liang, Z.P.: Challenges of Imaging Stucture and Function with MRI. IEEE Transactions on Medicine and Biology 19, 55–62 (2000)

    Article  Google Scholar 

  9. Nishimura, D.G.: Principles of Magnetic Resonance Imaging (April 1996)

    Google Scholar 

  10. MRI Basics, http://www.cis.rit.edu/htbooks/mri/inside.htm

  11. Haacle, E.M., Liang, Z.P.: Challenges of Imaging Stucture and Function with MRI. IEEE Transactions on Medicine and Biology 19, 55–62 (2000)

    Article  Google Scholar 

  12. Uzun, I.S., Bouridane, A.A.A.: FPGA Implementations of Fast Fourier Transforms for Real-Time Signal and Image Processing. In: Proceedings. 2003 IEEE International Conference on Field-Programmable Technology, FPT (2003)

    Google Scholar 

  13. Zhuo, J., Gullapalli, R.P.: MR Artifacts, Safety, and Quality. Physics Tutorial for Residents, pp. 275–279 (2006)

    Google Scholar 

  14. Aibinu, A.M., Salami, M.J.E., Shafie, A.A., Najeeb, A.R.: MRI Reconstruction Using Discrete Fourier Transform: A tutorial. World Academy of Science, Engineering and Technology (2008)

    Google Scholar 

  15. Moratal, D., Valls-Luch, A., Mart-Bonmat, L., Brummer, M.: k-Space tutorial: an MRI educational tool for a better understanding of k-space. Biomedical Imaging and Intervention Journal (2008)

    Google Scholar 

  16. Chaari, L., Pesquet, J.-C., Benazza-Benyahia, A., Ciuciu, P.: Autocalibrated Parallel MRI Reconstruction in the Wavelet Domain. In: IEEE International Symposium on Biomedical Imaging, Paris, France, May 14-17, pp. 756–759 (2008)

    Google Scholar 

  17. Schultz, G., et al.: K-Space Based Image Reconstruction of MRI Data Encoded with Ambiguous Gradient Fields. In: Proc. of International Society for Magnetic Resonance in Medicine (2011)

    Google Scholar 

  18. Stone, S.S., et al.: Accelerating Advanced MRI Reconstructions on GPUs. In: Proceedings of the 5th International Conference on Computing Frontiers (2008)

    Google Scholar 

  19. Kleut, D., Jovanovi, M., Reljin, P.D.B.: 3D Visualisation of MRI images using MATLAB. Journal of Automatic Control 16(1-3) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haque, M.N., Uddin, M.S., Abdullah-Al-Wadud, M., Chung, Y. (2011). Fast Reconstruction Technique for Medical Images Using Graphics Processing Unit. In: Kim, Th., Adeli, H., Ramos, C., Kang, BH. (eds) Signal Processing, Image Processing and Pattern Recognition. SIP 2011. Communications in Computer and Information Science, vol 260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27183-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27183-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27182-3

  • Online ISBN: 978-3-642-27183-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics