Skip to main content

A Noise-Tolerant Enhanced Classification Method for Logo Detection and Brand Classification

  • Conference paper
Security Technology (SecTech 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 259))

Included in the following conference series:

  • 833 Accesses

Abstract

This paper introduces a Noise-Tolerant Enhanced Classification (N-TEC) approach to monitor and prevent the increasing online counterfeit product trading attempts and frauds. The proposed approach is able to perform an automatic logo image classification at a fast speed on realistic and noisy product pictures. The novel contribution is three-fold: (i) design of a self adjustable cascade classifier training approach to achieve strong noise tolerance in training, (ii) design of a Stage Selection Optimization (SSO) method which is compatible with the training approach to improve the classification speed and the detection accuracy, (iii) development of an automatic classification system which achieves promising logo detection and brand classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. International Authentication Association: Counterfeit Statistics (2010), http://internationalauthenticationassociation.org/content/counterfeit_statistics.php

  2. Otim, S., Grover, V.: E-commerce: a brand name’s curse. Electronic Markets 20(2), 147–160 (2010)

    Article  Google Scholar 

  3. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Friedman, J., Hastie, T., et al.: Additive logistic regression: A statistical view of boosting. Annals of Statistics 28(2), 337–374 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, C., Zhang, Z.: Boosting-Based Face Detection and Adaptation. Synthesis Lectures on Computer Vision. Morgan and Claypool (2010)

    Google Scholar 

  6. Zhang, C., Zhang, Z.: A Survey of Recent Advances in Face Detection. Microsoft Research Technical Report, MSR-TR-2010-66 (2010)

    Google Scholar 

  7. Castrillon, M., Deniz, O., et al.: A comparison of face and facial feature detectors based on the Viola-Jones general object detection framework. Machine Vision and Applications 22(3), 481–494 (2011)

    Google Scholar 

  8. Li, S.Z., Zhang, Z.Q.: FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  9. Viola, P., Jones, M.J., et al.: Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision 63(2), 153–161 (2005)

    Article  Google Scholar 

  10. Mita, T., Kaneko, T., Hori, O.: Joint haar-like features for face detection. In: 10th In ICCV (2005)

    Google Scholar 

  11. Viola, P., Platt, J., Zhang, C.: Multiple instance boosting for object detection. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  12. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  13. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: Proceedings of 2002 International Conference on Image Processing, vol. I, pp. 900–903 (2002)

    Google Scholar 

  14. Tuzel, O., Porikli, F., et al.: Pedestrian detection via classification on Riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1713–1727 (2008)

    Article  Google Scholar 

  15. EBAY: Images of search results, http://www.ebay.com/

  16. Rowley, H.A., Baluja, S., et al.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Thing, V.L.L. (2011). A Noise-Tolerant Enhanced Classification Method for Logo Detection and Brand Classification. In: Kim, Th., Adeli, H., Fang, Wc., Villalba, J.G., Arnett, K.P., Khan, M.K. (eds) Security Technology. SecTech 2011. Communications in Computer and Information Science, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27189-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27189-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27188-5

  • Online ISBN: 978-3-642-27189-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics