
Analysis of Service Oriented Software Systems
with the Conversation Calculus

Lúıs Caires and Hugo Torres Vieira

CITI and Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

Abstract. We overview some perspectives on the concept of service-
based computing, and discuss the motivation of a small set of modeling
abstractions for expressing and analyzing service based systems, which
have led to the design of the Conversation Calculus. Distinguishing as-
pects of the Conversation Calculus are the adoption of a very simple, con-
text sensitive, local message-passing communication mechanism, natural
support for modeling multi-party conversations, and a novel mechanism
for handling exceptional behavior. In this paper, written in a tutorial
style, we review some Conversation Calculus based analysis techniques
for reasoning about properties of service-based systems, mainly by going
through a sequence of illustrating examples.

1 Introduction

Web and service-based systems have emerged mainly as a toolkit of technological
and methodological solutions for building open-ended collaborative applications
on the internet, leading to the recent trend towards the SaaS (Software as a
Service) distribution model. Many concepts frequently advanced as particular to
service-oriented computing systems, namely, interface-oriented distributed pro-
gramming, long duration transactions and compensations, separation of work-
flow from service instances, late binding and discovery of functionalities, are not
new. However, it must be acknowledged that the idea of service based computing
is definitely contributing to physically realize an emerging model of computa-
tion, which is global (encompassing the internet as a whole), interaction-based
(subsystems communicate via message passing), and loosely coupled (connec-
tions are established dynamically, and on demand). It is then very important to
better understand in what sense service orientation may be exploited as a new
paradigm to build and reason about distributed systems.

Of course, the global computing infrastructure is bound to remain highly het-
erogeneous and dynamic, so it does not seem reasonable to foresee the premature
emergence of comprehensive theories and technological artifacts, well suited for
everyone and every application. This suggests that one should focus not only on
particular systems and theories themselves, but also on general systems, their
properties, and their interfaces. In a recent line of work, mainly developed in the
context of the EU IP project Sensoria [21] and extended in the context of the

CMU-PT INTERFACES project [15], we have proposed a new model for service-
oriented computation, based on a process calculus, with the aim of providing a
foundation for rigorous modeling, analysis and verification. Our starting point
was an attempt to isolate the essential characteristics of the service-oriented
model of computation, in order to propose a motivation from “first principles”
of a reduced set of general abstractions for expressing and analyzing service
based systems. To focus on a set of independent primitives, we have developed
our model by modularly adapting the synchronous π-calculus as follows

– introducing the general notion of conversation context ;
– replacing channel communication by labeled message-passing primitives;
– adding a canonical exception handling mechanism

We have striven to keep our realization fairly general, so to achieve simplic-
ity and clarity, and to ensure orthogonality and semantic independence of the
chosen primitives. The proposed model, the Conversation Calculus, is a minimal-
istic, yet very expressive formalism, able to express and support reasoning about
complex, dynamic, multiparty service based conversations, where partners may
dynamically join and leave interactions, as we often find in“real-world” service
based systems.

In this paper, we show how the Conversation Calculus can be used to reason
about properties of service-based systems. In the spirit of a tutorial, no really new
concepts are introduced, instead the focus is on a more detailed discussion of the
underlying principles that guided the development of the language, accompanied
by new examples that illustrate its expressiveness, and the kind of analyses that
may be performed in the framework.

2 Aspects of Services

In this section, we attempt to identify some essential characteristics of the
service-oriented model of computation, in order to justify a motivation from
“first principles” of a reduced set of general abstractions for expressing and
analyzing service based systems. Following [26], we identify as main features
distribution, communication and context sensitiveness, and loose coupling.

2.1 Distribution

The purpose of a service relationship is to allow the incorporation of extra activ-
ities in a software system, without having to engage local resources and capabil-
ities to support such activities. By delegating activities to an external provider,
which will perform them using their remote resources and capabilities, a com-
puting system may concentrate on those tasks for which it may autonomously
provide adequate solutions. Thus, the notion of service makes particular sense
when the service provider and the service client are separate entities, with ac-
cess to separate resources and capabilities. This notion of the service relationship
between provider and client assumes an underlying distributed computational

model, where client and server are located at least in distinct (operating system)
processes, more frequently in distinct network sites.

The invocation of a service by a client results in the creation of a new ser-
vice instance. Initially, a service instance is composed by a pair of endpoints,
one endpoint located in the server site, where the service is defined, the other
endpoint in the client site, where the request for instantiation took place. From
the viewpoint of each partner, the respective endpoint acts as a local process,
with potential direct access to local resources and capabilities. Thus, for us an
endpoint is not a name, a port address, or channel, but an interactive process.
Endpoints work together in a tightly coordinated way, by exchanging data and
control information through a dedicated communication medium. In general, a
service relationship may be initiated by a pair of remote endpoints, but may
later on be enlarged with extra endpoints, located in other sites, developing a
multiparty conversation.

2.2 Communication, Contexts, and Context Sensitiveness

The invocation of a service by an initiator client causes the creation of a new com-
munication medium to host the interactions of the particular service instance.
The service client (initiator) and client (responder) are immediately given access
to this freshly created communication medium (see Figure 1), which will host
a new conversation, and which might later on be joined in by other parties. To
interact in the conversation medium the client establishes an endpoint or ac-
cess point to the medium in its local context, and the process located in the
endpoint is able to interact remotely in the service medium and locally in the
client context. Likewise, the service responder establishes an endpoint to interact
in the service conversation, and the process located in the endpoint is able to
communicate with the server context (e.g., to access server resources).

For example, consider the scenario where the endpoint realizing an archiving
functionality in the client context communicates with the other subsystems of
the client, e.g., to receive document archiving requests and document retrieval
requests, while the remote endpoint in the server site communicates with other
subsystems in the service provider context, e.g., the database, the indexing in-
frastructure, and other resources needed for the provider task.

Access to a conversation may be shared with other parties. In particular,
access may be given to other service providers that may then contribute to on-
going service tasks. At any moment, any party may then interact with any other
party that shares access to the same conversation, as depicted in Figure 2 for
the case of three parties. It is important to notice that in general, the distinction
client/server may get blurred in a multiparty conversation, and we essentially
need to host a delimited conversation between several symmetric partners.

For instance, in the archiving example, the server may decide to share its
work load with other providers, allowing each one to establish an endpoint of
the shared medium. In such way, a request to store data may be picked up by
any of the service providers listening on the shared communication medium.

service instance

client context provider context

context

process

initiator endpoint

responder endpoint

Fig. 1. Conversation initiation.

Fig. 2. Ongoing Conversation.

We understand an endpoint just as a particular case of a delimited context or
scope of interaction. More generally, a context is a delimited space were compu-
tation and communication happens. A context may have a spatial meaning, e.g.,
as a site in a distributed system, but also a behavioral meaning, e.g., as context
of conversation, or a session, between two or more partners. For example, the
same message may appear in two different contexts, with different meanings (web
services technology has introduced artifacts such as “correlation” to determine
the appropriate context for otherwise indistinguishable messages).

Thus, the notion of conversation as a medium of communication which may
be accessed from anywhere in the system and shared between several parties
seems to be a convenient abstraction mechanism to structure the several service
interactions in a service-oriented system.

The description above suggests two forms of communication capabilities.
First, processes may interact if they are located in the same endpoint or in
two endpoints of the same conversation. Second, interaction may occur between
immediately nested endpoints. Endpoints as the one described may be nested at
many levels, corresponding to subsidiary service instances, processes, etc. Notice

inside other side upside

Fig. 3. Contexts and Communication Pathways.

that we do not expect communication to happen between arbitrary contexts,
but rather to always fall in one of the two special cases described above: interac-
tion inside a given conversation, and external interaction (with the immediately
external context). In Figure 3 we illustrate our intended context dependent com-
munication model, and the various forms of interaction it admits.

A context is also a natural abstraction to group and publish together closely
related services, including when such services are provided by several sites. Typ-
ically, services published by the same entity are expected to share common re-
sources; we notice that such sharing is common at several scales of granularity.
Extreme examples are an object, where the service definitions are the methods
and the shared context is the object internal state, and an entity such as, e.g.,
Amazon, that publishes several services for many different purposes; such ser-
vices certainly share many internal resources of the Amazon context, such as
databases, payment gateways, and so on.

Delimited contexts are also natural candidates for typing, in terms of the mes-
sages interchange patterns that may happen at its border. We would thus expect
types (or logical formulas) specifying various properties of interfaces, of service
contracts, of endpoint session protocols, of security policies, of resource usage,
and of service level agreements, to be in general assigned to context boundaries.
Enforcing boundaries between subsystems is also instrumental to achieve loose
coupling of systems.

2.3 Loose Coupling

A service task may rely on several subsidiary services, where each one may in-
volve a number of collaborating partners, and some local processes that control
(orchestrate) the several subsidiary tasks and carry out some local functionality.
Crucially to the service-oriented design, the several pieces that form the service
implementation should be composed in a loosely coupled way, so as to support
aimed features of service-oriented systems such as dynamic binding and dynamic
discovery of partner service providers. For instance, an orchestration describing
a “business process”, should be specified in a quite independent way of the par-
ticular subsidiary service instances used. In the orchestration language WSBPEL
[2], loose coupling to external services is enforced to some extent by the separate
declaration of “partner links” and “partner roles” in processes. In the model-
ing language SRML [18] (inspired by the Service Component Architecture [4]),

the binding between service providers and clients is mediated by “wires”, which
describe plugging constraints between otherwise hard to match interfaces.

To support loose coupling, the specific details of a given service implemen-
tation should not be visible to external processes, so there must be a boundary
between service instances and processes using them. Such boundary may be im-
posed by mediating processes that adapt the (implementation specific) service
communication protocols to the abstract behavioral interface expected by the
external context. It is then instrumental to encapsulate all computational enti-
ties cooperating in a service task in a conversation context, and allow them to
communicate between themselves and the outer context only via some general
message passing mechanism.

2.4 Other Aspects

There are many other aspects that must be addressed in a general model of
service-oriented computation. The most obvious ones include failure handling
and resource disposal, security (in particular access control, authentication and
secrecy), time awareness, and a clean mechanism of inter-operation. This last as-
pect seems particularly relevant, and certainly suggests an important evaluation
criteria for any service-oriented computation model.

3 The Conversation Calculus

In this section, we motivate and present in detail the primitives of our calcu-
lus. After that, we present the syntax of our calculus, and formally define its
operational semantics, by means of a labeled transition system.

Conversation Context A conversation context is a medium where related
interactions can take place. A conversation context can be distributed in many
pieces, and processes inside any piece can seamlessly talk to any other piece of
the same context. Each context has a unique name (cf., a URI). We use the
conversation access construct

n ! [P]

to say that the process P is interacting in conversation n. Potentially, each
conversation access will be placed at a different enclosing context. On the other
hand, any such conversation access will necessarily be placed at a single enclosing
context. The relationship between the enclosing context and such an access point
may be seen as a caller/callee relationship, but where both entities may interact
continuously.

Context Awareness A process running inside a given context should be able
to dynamically become aware of the identity of the former. This capability may
be realized by the construct

this(x).P

The variable x will be replaced inside the process P by the name n of the current
context. The computation will proceed as P{x!n}. For instance the process
c ! [this(x).P] evolves in one computation step to c ! [P{x!c}]. Our context
awareness primitive bears some similarity with the self or this of object-oriented
languages, although of course it has a different semantics.

3.1 Communication

Communication between subsystems is realized by message passing. We denote
the input/output of messages from/to the current context by the constructs

label!?(x1, . . . , xn).P
label!!(v1, . . . , vn).P

Messages are labeled. In the output case (!), the terms vi represent message
arguments, that is, values to be sent, as expected. In the input case (?), the
variables xi represent the message parameters and are bound in P , as expected.
The target symbol " (read “here”) says that the corresponding communication
actions must interact in the current conversation conversation context, where
the messages are being sent. Second, we denote the input/output of messages
from/to the outer context by the constructs

label"?(x1, . . . , xn).P
label"!(v1, . . . , vn).P

The target symbol # (read “up”) says that the corresponding communication
actions must interact in the (uniquely determined) outer context, where “outer”
is understood relatively to the context where the process exercising the action
is running.

3.2 Service Oriented Idioms

Although we do not introduce them natively in the language, we present some
service-oriented idioms which capture typical service-oriented interaction: service
definition, service instantiation and service join.

A context (a.k.a. a site) may publish one or more service definitions. Ser-
vice definitions are stateless entities, pretty much as function definitions in a
functional programming language. A service definition may be expressed by

def ServiceName ⇒ ServiceBody

where ServiceName is the service name, and ServiceBody is the process that
should be executed at the service endpoint for each service instance, in other
words the service body. In order to be published, such a definition must be
inserted into a context, e.g.,

ServiceProvider ! [def ServiceName ⇒ ServiceBody · · ·]

Such a published service may be instantiated by means of a instantiation idiom

new n · ServiceName ⇐ ClientProtocol

where n identifies the conversation where the service is published. For instance,
the service defined above may be instantiated by

new ServiceProvider · ServiceName ⇐ ClientProtocol

The ClientProtocol describes the process that will run inside the endpoint held
by the client. The outcome of a service instantiation is the creation of a new
globally fresh context identity (a hidden name), and the creation of two access
pieces of a context named by this fresh identity. One will contain the ServiceBody
process and will be located inside the ServiceProvider context. The other will
contain the ClientProtocol process and will be located in the same context as
the instance expression that requested the service instantiation.

In our model conversation identifiers may be manipulated by processes if
needed (accessed via the this(x).P), passed around in messages and subject to
scope extrusion: this allows us to model collaboration between multiple parties
in a single service conversation, realized by the progressive access of dynamically
determined partners to an ongoing conversation. Joining of another partner to an
ongoing conversation is a frequent programming idiom, that may be abstracted
by:

join ServiceProvider · ServiceName⇐ ContinuationProcess

The join and the new expression are implemented in a similar way, both rely-
ing on name passing. The key difference is that while new creates a fresh new
conversation, join allows a service ServiceName defined at ServiceProvider to
join in the current conversation, while the calling party continues interacting
in the current conversation as specified by ContinuationProcess. So, even if the
new and join are represented in a similar way, the abstract notion they realize
is actually very different: new is used to start a fresh conversation between two
parties (e.g., used by a client that instantiates a service) while the join is used
to allow another service provider to join an ongoing conversation (e.g., used by
a participant in a service collaboration to dynamically delegate a task to some
remote partner). At a very high level of description the two primitives can be
unified as primitives that support the dynamic delegation of tasks (either in a
unary conversation or in a n-ary conversation).

3.3 Exception Handling

We introduce two primitives to model exceptional behavior, in particular fault
signaling, fault detection, and resource disposal, these aspects are certainly or-
thogonal to the previously introduced communication mechanisms. We adapt
the classical try− catch− and throw− to a concurrent setting. The primitive to
raise an exception is

throw.Exception

This construct throws an exception with continuation the process Exception,
and has the effect of forcing the termination of all other processes running in
all enclosing contexts, up to the point where a try − catch block is found (if
any). The continuation Exception will be activated when (and if) the exception
is caught by such an exception handler. The exception handler construct

try P catch Handler

allows a process P to execute normally until some exception is thrown inside
P . At that moment, all of P is terminated, and the Handler handler process,
which is guarded by try−catch, is activated, concurrently with the continuation
Exception of the throw.Exception that originated the exception, in the context
of a given try − catch− block. By exploiting the interaction of the Handler
and Exception processes, it is possible to represent many recovery and resource
disposal protocols, including compensable transactions [12].

3.4 Syntax and Semantics of the Calculus

We may now formally introduce the syntax and semantics of the conversation
calculus. We assume given an infinite set of names Λ, an infinite set of variables
V, and an infinite set of labels L. We abbreviate a1, . . . , ak by ã. We use d for
communication directions, α for action prefixes and P,Q for processes. Notice
that message and service identifiers (from L) are plain labels, not subject to
restriction or binding. The syntax of the calculus is given in Figure 4.

The static core of our language is derived from the π-calculus [24]. We thus
have 0 for the inactive process, P | Q for the parallel composition, (νa)P for
name restriction, and recX .P and X for recursion. The prefix guarded choice
Σi∈I αi.Pi specifies a process which may exhibit any one of the αi actions and
evolve to the respective continuation Pi. Processes also specify conversation ac-
cesses: n ! [P] represents a process that is accessing conversation n and inter-
acting in it according to what P specifies.

Context-oriented actions prefixes include the output ld !(ñ) — send names ñ
in a message labeled l, to either the current or enclosing conversation (depending
on d); the input ld?(x̃) — receive names and instantiate variables x̃ in a message
labeled l from either the current or enclosing conversation (d); and the context
awareness primitive this(x) which allows a process to dynamically gain access
to the identity of its “current” (") conversation.

The Conversation Calculus includes two primitives for exception handling:
the try P catch Q and the throw.P . The throw.P signals an exception and
causes the termination of every process up to an enclosing try P catch Q, in
which case P is activated. The try P catch Q behaves as process P up to the
point an exception is thrown (if any), in which case process Q is activated.

The distinguished occurrences of a, x̃, and x are binding occurrences in
(νa)P , ld?(x̃).P , and this(x).P , respectively. The sets of free (fn(P)) and bound
(bn(P)) names and variables in a process P are defined as usual, and we implic-
itly identify α-equivalent processes.

a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, v, . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)

d ::= ! | " (Directions)

α ::= ld !(en) (Output)
| ld?(ex) (Input)
| this(x) (Context awareness)

P, Q ::= 0 (Inaction)
| P | Q (Parallel)
| (νa)P (Restriction)
| recX .P (Recursion)
| X (Variable)
| Σi∈I αi.Pi (Prefix Guarded Choice)
| n ! [P] (Conversation Access)
| try P catch Q (Try-catch)
| throw.P (Throw)

Fig. 4. The Conversation Calculus

We define the semantics of the conversation calculus via a labeled transition
system. We introduce transition labels λ and actions act :

act ::= τ | ld !(ã) | ld?(ã) | thisd | throw (Actions)
λ ::= c act | act | (νa)λ (Transitions)

Actions capture internal actions τ , message outputs ld !(ã) and inputs ld?(ã),
context identity accesses thisd and exception signals throw. Transition labels
tag actions with the conversation identifier they respect to c act and with bound
names which are emitted in the action (νa)λ. In (νa)λ the distinguished occur-
rence of a is bound with scope λ (cf., the π-calculus bound output and bound
input actions). A transition label containing c act is said to be located at c (or
just located), otherwise is said to be unlocated. We write (νã) to abbreviate a
(possibly empty) sequence (νa1) . . . (νak), where the order is not important.

We adopt a few conventions and notations. We note by λd a transition label
λd containing the direction d (#, "). Then we denote by λd′

the label obtained
by replacing d by d ′ in λd . Given an unlocated label λ, we represent by c ·λ the
label obtained by locating λ at c, so that e.g., c · (νã)act = (νã)c act. We assert
unloc(λ) if λ is not located and is either an input or an output, and loc(λ) if λ
is located and is either an input or an output. We define out(λ) as follows:

out((νã)b ld!(c̃)) " c̃ \ (ã ∪ {b}) out((νã)ld!(c̃)) " c̃ \ (ã)

and out(λ) = ∅ otherwise. We use n(λ) and bn(λ) to denote (respectively) all
names and the bound names of a transition label.

The labeled transition system relies on a synchronization algebra which we
now introduce. Essentially, the synchronization algebra describes how two par-
allel processes may synchronize, specifying how any pair of transitions may be
combined and what is the result of such combination. Since not all pairs of tran-
sitions represent a valid synchronization we use the ◦ as the result of an invalid
synchronization. We then denote by λ1•λ2 the result of combining λ1 and λ2 via
function •, resulting in either a transition (in case λ1 and λ2 may synchronize)
or ◦ (otherwise). • is defined such that λ1 • λ2 = λ2 • λ1 and:

l!!(ã) • l!?(ã) " τ
l"!(ã) • l"?(ã) " τ
c l!!(ã) • c l!?(ã) " τ
l!!(ã) • l"?(ã) " this!

l!!(ã) • c l!?(ã) " c this!

l"!(ã) • c l!?(ã) " c this"

l!?(ã) • l"!(ã) " this!

l!?(ã) • c l!!(ã) " c this!

l"?(ã) • c l!!(ã) " c this"

for some l, ã, c, and λ1•λ2 = ◦ otherwise. Function • resolves direct synchroniza-
tions (e.g., c l!?(ã)•c l!!(ã)) in an internal action τ . However, since messages are
context dependent, synchronizations of unlocated transitions require contextual
information. So, for instance, transition labels l!!(ã) and c l!?(ã) may synchro-
nize, provided the current conversation is c — the resulting label c this! will
read the identity of the current conversation, and progress only if the identity
is c. Intuitively, label c this! captures a silent action of a process which may
occur provided the process is placed in conversation c. Labels l!?(ã) and l"!(ã)
synchronize, provided the current and enclosing conversations have the same
identity — tested via label this!. Also, labels c l!?(ã) and l"!(ã) synchronize
provided the enclosing conversation has identity c — checked via label c this".

We may now present the labeled transition system. In Figs. 5, 6 and 7 we
present the labeled transition system for the calculus. The rules presented in
Figure 5 closely follow the π-calculus labeled transition system (see [25]). We
omit the rules symmetric to (Par) and (Close).

We briefly review the rules presented in Fig. 6: in rule (Here), after going
through a context boundary, an # message becomes "; in (Loc) an unlocated "
message gets located at the context identity in which it originates; in (Through) a
non-this located label transparently crosses the context boundary, and likewise
in (Internal) for a τ label; in (ThisHere) a this label reads the identity of the
enclosing context (and matches it with the current conversation identity); in
(ThisLoc) a c this label matches the enclosing context; in (This) a this label
reads the current conversation identity.

As for the rules in Figure 7: in (Throw) an exception is signaled; in (ThrowPar)
and (ThrowConv) enclosing computations are terminated; in (Try) a non-throw

ld !(ea).P
ld !(ea)−→ P (Out) ld?(ex).P

ld?(ea)−→ P{ex#ea} (In)

αj .Pj
λ−→ Q (j ∈ I)

Σi∈I αi.Pi
λ−→ Q

(Sum)
P{X#rec X .P} λ−→ Q

rec X .P
λ−→ Q

(Rec)

P
λ−→ Q (a %∈ n(λ))

(νa)P
λ−→ (νa)Q

(Res)
P

λ−→ Q (a ∈ out(λ))

(νa)P
(νa)λ−→ Q

(Open)

P
λ−→ Q (λ %= throw)

P | R
λ−→ Q | R

(Par)
P

λ1−→ P ′ Q
λ2−→ Q′ (λ1 • λ2 %= ◦)

P | Q
λ1•λ2−→ P ′ | Q′

(Com)

P
(νea)λ1−→ P ′ Q

λ2−→ Q′ (ea ∩ fn(P | Q) = ∅, λ1 • λ2 %= ◦)

P | Q
λ1•λ2−→ (νea)(P ′ | Q′)

(Close)

Fig. 5. Transition Rules for Basic Operators.

P
λ!
−→ Q (c %∈ bn(λ))

c ! [P]
λ"
−→ c ! [Q]

(Here)
P

λ−→ Q (unloc(λ))

c ! [P]
c·λ−→ c ! [Q]

(Loc)

P
λ−→ Q (loc(λ), c %∈ bn(λ))

c ! [P]
λ−→ c ! [Q]

(Through)
P

τ−→ Q

c ! [P]
τ−→ c ! [Q]

(Internal)

P
this"
−→ Q

c ! [P]
c this"
−→ c ! [Q]

(ThisHere)
P

c this"
−→ Q

c ! [P]
τ−→ c ! [Q]

(ThisLoc)

this(x).P
c this"
−→ P{x#c} (This)

Fig. 6. Transition Rules for Conversation Operators.

throw.P
throw−→ P (Throw)

P
throw−→ R

P | Q
throw−→ R

(ThrowPar)

P
throw−→ R

n ! [P]
throw−→ R

(ThrowConv)
P

throw−→ R

try P catch Q
τ−→ Q | R

(Catch)

P
λ−→ Q λ %= throw

try P catch R
λ−→ try Q catch R

(Try)

Fig. 7. Transition Rules for Exception Handling Operators.

def s ⇒ P " s!?(x).x ! [P]

new n · s ⇐ Q " (νc)(n !
ˆ
s!!(c)

˜
| c ! [Q])

join n · s ⇐ Q " this(x).(n !
ˆ
s!!(x)

˜
| Q)

%def s ⇒ P " recX .s!?(x).(X | x ! [P])

Fig. 8. Service Idioms.

transition crosses the handler block; in (Catch) an exception is caught by the
handler block, activating (in parallel) the continuation process and the handler.

Notice that the presentation of the transition system is fully modular: the
rules for each operator are independent, so that one may easily consider several
fragments of the calculus (e.g., without exception handling primitives). The oper-
ational semantics of closed systems, usually represented by a reduction relation,
is here specified by τ−→.

3.5 Representing Service-Oriented Idioms

Our core model focuses on the fundamental notions of conversation context
and message-based communication. From these basic mechanisms, useful pro-
gramming abstractions for service-oriented systems may be idiomatically de-
fined, namely service definition and instantiation constructs (defined as prim-
itives in [26]), and the conversation join construct (introduced in [13]). These
constructs may be embedded in a simple way in the minimal calculus, without
hindering the flexibility of modeling and analysis.

The service-oriented idioms along with their translation in lower level com-
munication primitives is shown in Fig. 8. We specify the service definition idiom
by def s ⇒ P , which publishes a service named s in the current conversation.
Process P specifies the code that will run in the service conversation, upon ser-
vice instantiation, implementing the service provider role in the conversation.
The service definition is implemented in basic communication primitives as:

def s ⇒ P " s!?(x).x ! [P] (x (∈ fv(P))

Essentially, the service definition specifies a message — labeled by the name of
the service s — is received, carrying the identity of the service conversation.
Then, code P will run in such received conversation. Service definitions must
be placed in appropriate conversation contexts (cf., methods in objects). For
instance, to specify BuyService is published in the Seller context we write:

Seller ! [def BuyService⇒ SellerCode]

Typically, services once published are persistent in the sense they can be instan-
tiated several times. To model such persistent services we introduce the recursive
variant of service definition.

(def s ⇒ P " recX .s!?(x).(X | x ! [P]) (x (∈ fv(P))

Persistent service definitions are specified so as to always be ready to receive a
service instantiation request, handling each request in the conversation received
in each service instantiation message.

The idiom that supports the instantiation of a published service is noted by
new n · s ⇐ Q. The new idiom specifies the conversation where the service is
published at (n), the name of the service (s) and the code that will run on the
service client side (Q). A service instantiation resulting from a synchronization
from a published service def and an instantiation new results in the creation of
a fresh conversation that is shared between service provider and service caller.
We translate the new idiom in the basic primitives of the CC as follows:

new n · s ⇐ Q " (νc)(n !
[
s!!(c)

]
| c ! [Q]) (c (∈ (fn(Q) ∪ {n}))

The service instantiation is then realized by means of a message exchange in
conversation n, where the service is published at, being the message labeled by
the name of the service s and carrying a newly created name c that identifies
the conversation where the service interaction is to take place. In parallel to the
message output that instantiates the service, we find the code of the client role
Q, running in the freshly created conversation c. Notice that Q is already active,
although it has to wait for the server side to pick up the service conversation
identity to start interacting in conversation c, by means of " directed messages.
Notice also that process Q can interact in the conversation where the service
instantiation request lies, using # directed messages.

The join idiom is implemented using the core CC primitives as follows:

join n · s ⇐ Q " this(x).(n !
[
s!!(x)

]
| Q) (x (∈ (fv(Q) ∪ {n}))

The current conversation identity is accessed via the this primitive, and passed
along in service message s exchanged in the conversation n where s is published
at. Process Q continues to interact in the current conversation (the same that
was accessed in the this).

4 A Sequence of Examples

In this section, we illustrate the expressiveness of our calculus through a sequence
of examples. For the sake of commodity, we informally extend the language with
some auxiliary primitives, e.g., if − then − else, etc. We also use replication !,
which may be simulated using recursion, anonymous contexts, defined as [P] "
(νa)(a ! [P]) (where a is fresh) to isolate communication, and we omit " message
directions (e.g., read?() abbreviates read!?()).

4.1 Memory Cell

We discuss some simple examples of stateful service definition and invocation
patterns, using memory cell implementations. Consider the following implemen-

tation of a memory cell service.

def Cell⇒ (
!(read?().next!()
+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?())

Intuitively, each time a value is written in the cell, a process that stores the value
is spawned. This process is ready to repeatedly emit the value upon request
(message next), or to stop giving out the value. To read the cell value, a request
for the next emission of the value is sent to the memory process. To write a new
value, the installed memory process is stopped, and another process which stores
the new value is spawned (notice that since the first write does not have to stop
any memory process, the respective stop message is collected separately).

We show how to instantiate the Cell service so to create a delegate cell
process in the current context. The delegate accepts put and get messages from
the client context, and replies to each get message with a reply message to
the context. It provides the memory cell functionality delegation to the remote
service FreeCellsInc ! Cell.

new FreeCellsInc · Cell⇐ (
!(put"?(x).write!(x)
+
get"?().read!().value?(x).reply"!(x)))

A process in the context may then use the created service instance as follows:

put!(value).get!().reply?(x).proceed!(x)

To show how the system evolves, let us consider the composition of the Cell
service provider and user, placing the provider in the FreeCellsInc context:

FreeCellsInc ! [
def Cell⇒ (!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]

|
new FreeCellsInc · Cell⇐ (!(put"?(x).write!(x)

+
get"?().read!().value?(x).reply"!(x)))

|
put!(value).get!().reply?(x).proceed!(x)

By translating the service idioms into their lower level representation we obtain:

FreeCellsInc ! [
Cell?(y).y ! [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]]

|
(νc)(FreeCellsInc ! [Cell!(c)]

|
c ! [!(put"?(x).write!(x)

+
get"?().read!().value?(x).reply"!(x))])

|
put!(value).get!().reply?(x).proceed!(x)

Service provider and client may synchronize in the Cell service message, being
(fresh) name c passed in the message which allows the service provider to gain
access to the conversation.

(νc)(FreeCellsInc ! [
c ! [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]]

|
c ! [!(put"?(x).write!(x)

+
get"?().read!().value?(x).reply"!(x))])

|
put!(value).get!().reply?(x).proceed!(x)

The service client instance and the process using it interact in message put
(notice the # direction), activating a cell write.

(νc)(FreeCellsInc ! [
c ! [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]]

|
c ! [!(put"?(x).write!(x) + get"?().read!().value?(x).reply"!(x))

|
write!(value)])

|
get!().reply?(x).proceed!(x)

At this point, service provider and client instances exchange message write in
the service conversation c, after which message stop is exchanged.

(νc)(FreeCellsInc ! [
c ! [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
recX .(stop?() + next?().value!(value).X)]]

|
c ! [!(put"?(x).write!(x)

+
get"?().read!().value?(x).reply"!(x))])

|
get!().reply?(x).proceed!(x)

Then, the get message is exchanged between service client instance and its user
process, activating a cell read.

(νc)(FreeCellsInc ! [
c ! [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
recX .(stop?() + next?().value!(value).X)]]

|
c ! [!(put"?(x).write!(x) + get"?().read!().value?(x).reply"!(x))

|
read!().value?(x).reply"!(x))])

|
reply?(x).proceed!(x)

At this point, service provider and client exchange message read, after which
message next is exchanged and the value emission is activated.

(νc)(FreeCellsInc ! [
c ! [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
value!(value).recX .(stop?() + next?().value!(value).X)]]

|
c ! [!(put"?(x).write!(x)

+
get"?().read!().value?(x).reply"!(x))
|
value?(x).reply"!(x))])

|
reply?(x).proceed!(x)

Now, the value message is exchanged, after which message reply carrying the
initially written value is picked up by the user process allowing it to proceed.

4.2 Dictionary

In the next example, we use a toy dictionary service to discuss the possible need
of correlating messages belonging to different interaction contexts. A possible
instantiation of such a service may be expressed thus:

new FreeBagsCo · Dict⇐ (
!(put"?(key , x).store!(key , x)
+
get"?(key).get!(key).value?(x).reply"!(x)

)

If the generated instance is to be solicited by several concurrent get requests,
some form of correlation may be needed, in order to route the associated reply
answers to the appropriate contexts. In this case, we set the get message to
play the role of an initiator message, now receiving also a reference r to the
context of interaction (associated to getting the dictionary entry associated to
the indicated key).

new FreeBagsCo · Dict⇐ (
!(put"?(key , x).store!(key , x)
+
get"?(r, key).get!(key).value?(x).r ! [reply!(x)]

)

Now, the reply message is sent inside the appropriate conversation context r,
the one that relates to the initial get. A process in the context may then use
the service instance by following the appropriate intended protocol, e.g.:

put!(key , value).(νr)(get(r, key).r ! [reply?(x).proceed"!(x)])

Here, we are essentially in presence of a familiar form of continuation passing.
In this case, we have generated a new special context r in order to carry

out the appropriate conversation. In many situations we would like just to cor-
relate the subsidiary conversation with the current context, without having to
introduce a new special context. In this case, we may write the (perhaps more
natural) code, that will have the same effect as the code above:

put!(key , value).this(currentC).get(currentC , key).reply?(x).proceed!(x)

Remember that the this(x).P (context-awareness) primitive binds x in P to the
identity of the current context.

4.3 Service Provider Factory

We revisit the memory cell example, and provide a different realization. In this
case, we would like to represent each cell as a specific service provider, such that
the Read and Write operations are now services, rather than operations of a
particular service as shown above. A cell (named n) may be be represented by
the context:

Cell(n) " n ! [def Read⇒ value"?(x).value!(x) |
def Write⇒ value?(x).value"!(x)]

We may now specify a memory cell factory service.

CellFactoryService " def NewCell⇒ (νa)(Cell(a) | replyCell!(a))

To instantiate the cell factory service, and drop a theCell message with a fresh
cell reference (c) in the current context, we may write:

new FreeCellsInc · NewCell⇐ replyCell?(x).theCell"!(x)

The newly allocated cell service provider is allocated in the FreeCellsInc context,
as expected. To use the cell one may then write, e.g.,

theCell(c).(
· · ·
new c · Read ⇐ · · ·
| · · ·
new c ·Write ⇐ · · ·
· · ·)

This usage pattern for services, where service instantiation corresponds to some
form of task delegation rather that process delegation, is closer to a distributed
object model than to a service-oriented model. In any case, it is interesting to
be able to accommodate this usage pattern as a special case, not only for the
sake of abstract generality, but also because it will certainly turn out useful in
appropriate scenarios.

4.4 Exceptions

We illustrate a few usage idioms for our exception handling primitives. In the
first example, the service Service is instantiated on site Server, and repeatedly
re-launched on each failure – failure will be signaled by exception throwing within
the local protocol ClientProto, possibly as a result of a remote message.

rec Restart.
try

new Server · Service⇐ ClientProto
catch Restart

A possible scenario of remote exception throwing is illustrated below.

Server ! [
def Interruptible⇒
stop?().urgentStop!().throw |
. . .ServiceProto . . .]

new Server · Interruptible⇐
urgentStop?().throw |
. . .ClientProto . . .

Here, any remote endpoint instance of the Interruptible service may be inter-
rupted by the service protocol ServiceProto by dropping a message stop inside
the endpoint context. In this example, such a message causes the endpoint to
send an urgentStop message to the client side, and then throwing an exception,
which will cause abortion of the service endpoint. On the other hand, the service
invocation protocol will throw an exception at the client endpoint upon recep-
tion of urgentStop. Notice that this behavior will happen concurrently with
ongoing interactions between ServiceProto and ClientProto. In this example,
the exception issued in the server and client endpoints will have to be managed
by appropriate handlers in both sites. In the next example, no exception will be
propagated to the service site, but only to the remote client endpoint, and as a
result of any exception thrown in the service protocol ServiceProto.

Server ! [
def Interruptible⇒
try

ServiceProto
catch urgentStop!().throw]

In the examples discussed above, the decision to terminate the ongoing remote
interactions is triggered by the service code. In the next example, we show a
simple variation of the idioms above, where the decision to kill the ongoing
service instance is responsibility of the service context. Here, any instance of the
Interruptible service may be terminated by the service provider by means of
dropping a message killRequest in the endpoint external context.

Server ! [
def Interruptible⇒
try

killRequest"?().throw | ServiceProto
catch urgentStop().throw]

A simple example of a similar pattern in our last example on exceptions.

Server ! [
def TimeBound⇒

timeAllowed"?(delay).wait(delay).throw |
ServiceProto]

Here, any invocation of the TimeBound service will be allocated no more than
delay time units before being interrupted, where delay is a dynamic parameter
value read from the current server side context (we assume some extension of
our sample language with a wait(t) primitive, with the expected semantics).

4.5 Programming a Finance Portal

In this section we show the implementation of a Finance portal (inspired in a
Sensoria Project [21] case study) which illustrates how the several primitives
and idioms of the language can be combined, allowing to model complex in-
teraction patterns in a rather simple way. We model a credit request scenario,
where a bank client, a bank clerk and a bank manager participate, mediated
through a bank portal. The client starts by invoking a service available in the
bank portal and places the credit request, providing his identification and the
desired amount. The implementation of such client in CC is then:

Client ! [ClientTerminal
|
new BankPortal · CreditRequest⇐

request!(myId , amount).
(requestApproved?().transferDate!(date).approved"!()
+
requestDenied?().denied"!())]

The client code for the service instantiation specifies the messages that are to
be exchanged in the service conversation by using " messages. First a message
request is sent, after which one of two messages (either requestApproved or
requestDenied) informing on the decision is received. Only after receiving one
of such messages is the ClientTerminal informed (correspondingly) of the final
decision. Notice that the service code interacts with the ClientTerminal process
by means of # messages approved or denied. In fact, from the point of view of
ClientTerminal the external interface of the service instance can be characterized
by the process approved!() + denied!().

Next we show the code of the CreditRequest service published in conversa-
tion BankPortal , and persistently available (as indicated by the (annotation).

BankPortal ! [(def CreditRequest⇒
request?(uid , amount).
join Clerk · RiskAssessment⇐

assessRisk!(uid , amount).
riskVal?(risk).
if risk = HIGH then requestDenied!()
else this(clientC).

new Manager · CreditApproval⇐
requestApproval!(clientC , uid , amount , risk)]

The server code specifies that, in each CreditRequest service conversation, a
message request is received, then message assessRisk is sent and then message

riskVal is received. The first will be exchanged with the service client, while
the latter two will be exchanged with the clerk, that is asked to join the ongo-
ing conversation through service RiskAssessment. After that, depending on the
risk rate the clerk determined for the request, the bank portal is either able to
automatically reject the request, in which case it informs the client of such deci-
sion by sending message requestDenied, or it has to consult the bank manager,
creating a new instance of the CreditApproval service to that end — notice
that a new instance is created in this case. However, since the bank manager will
reply directly back to the client, the name of the client service conversation is
accessed, via the this(clientC), and passed along to the manager (in the first
argument of message requestApproval). This pattern is similar to a join: the
name of the current conversation is sent to the remote service provider, allowing
for it to join in the conversation. The difference with respect to a join is that the
remote service will only join the client conversation to reply back to the client. In
some sense, it is as if we only delegate a basic fragment of the client conversation
(e.g., the final reply), instead of incorporating the whole functionality provided
by CreditApproval in the CreditRequest service collaboration.

We now show the code for the CreditApproval service, assuming there is
a ManagerTerminal process able to interact with the manager, similarly to the
ClientTerminal process.

Manager ! [ManagerTerminal
|
(def CreditApproval⇒

requestApproval?(clientC , uid , amount , risk).
this(managerC).
showRequest"!(managerC , uid , amount , risk).

(reject?().clientC ! [requestDenied!()]
+
accept?().clientC ! [requestApproved!().

join BankATM · CreditTransfer⇐
orderTransfer!(uid , amount)]]

The CreditApproval server code specifies the reception of a requestApproval
message, carrying the name of the conversation where the final answer is to
be given in, after which the identity of the current conversation is accessed,
and passed along to ManagerTerminal in message showRequest in conversation
Manager . This allows ManagerTerminal to reply directly to the “right” con-
versation, since several copies of the CreditApproval service may be running
in parallel, and therefore several showRequest messages may have to be con-
currently handled and replied to by the ManagerTerminal: if the replies were
to be placed in the Manager conversation then they would also compete and
be at risk of being picked up by the wrong (unrelated) service instance. The
ManagerTerminal thus replies in the CreditApproval service conversation with
either a reject message or an accept message. After that the credit request
client is notified accordingly in the respective conversation. Also, in the case that
the credit is approved, the manager asks service CreditTransfer published at

BankATM to join the client conversation (the current conversation for the join

is the client conversation), so as to place the transfer order.
We now specify the code for the CreditTransfer service.

BankATM ! [
BankATMProcess
|
(def CreditTransfer⇒

orderTransfer?(uid , amount).
transferDate?(date).
scheduleTransfer"!(uid , amount , date)]

The CreditTransfer service code specifies the reception of the transfer order
and of the desired date of the transfer, after which forwards the information
to a local BankATMProcess, which will then schedule the necessary procedure.
Notice that the BankATM party is only asked to join in the conversation under
some circumstances, in such case interacting with the bank manager in message
orderTransfer and with the credit request client in message transferDate,
while otherwise it does not participate at all in the service collaboration.

The system obtained by composing the described processes captures an in-
teresting scenario where, not only the set of multiple participants in the col-
laboration is dynamically determined, but also the actual maximum number of
participants depends on a runtime condition.

5 Analysis Techniques

In several works, we have studied the dynamic and static semantics of the CC,
and illustrated their use to the analysis of service-based systems. Namely, we
have investigated behavioral equivalences, and type systems for conversation
fidelity and deadlock absence. In this tutorial note, we focus on basic results of
the observational semantics; in Section 6, we give further pointers to the type
based analysis.

We define a compositional behavioral semantics of the conversation calculus
by means of the standard notion of strong bisimulation. We prove that strong
and weak bisimilarity are congruences for all the primitives of our calculus.
This further ensures that our syntactically defined constructions induce properly
defined behavioral operators at the semantic level.

Definition 1. A (strong) bisimulation is a symmetric binary relation R on pro-
cesses such that, for all processes P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) ∩ fn(P | Q) = ∅ then there is a process Q′ such that

Q
λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest strong bisimulation.

Strong bisimilarity is an equivalence relation. We also have:

Theorem 1. Strong bisimilarity is a congruence.

We consider weak bisimilarity defined as usual, denoted by ≈.

Theorem 2. Weak bisimilarity is a congruence.

Notice Theorem 2 is not a direct consequence of Theorem 1. In fact, there
are other languages where the latter holds while the former does not. Informally,
the usual counter-example is given by processes τ.α.P and α.P which are weakly
bisimilar. Put in a summation context with process R we obtain τ.α.P + R and
α.P + R which are not weakly bisimilar (the former can do a silent action and
lose the ability to do R and the latter cannot mimic such action).

We also prove other interesting behavioral equations, for instance, the fol-
lowing equations hold up to strong bisimilarity:

1. n ! [P] | n ! [Q] ∼ n ! [P | Q].
2. m ! [n ! [o ! [P]]] ∼ n ! [o ! [P]].

(1) captures the local character of message-based communication in our
model, while (2) illustrates the idea that processes located in different access
pieces of the same conversation interact as if they where located in the same
access piece. Using such behavioral identities, in [26] we show that processes
admit a flat representation, where the nesting level of any active communication
prefix is at most two.

As an example of the sort of specifications captured by our type analysis
consider the CreditApproval service shown in Section 4.5. After being noti-
fied by of the credit approval decision, the CreditApproval service instance
forwards the notification to the client and, in case of approval, asks service
CreditTransfer to join the ongoing conversation. The type that captures the
role of the CreditApproval service instance in the client conversation is char-
acterized by the following type (assuming some basic types T1, . . .):

managerR "
⊕{! requestApproved().τ orderTransfer(T1, T2).? transferDate(T4);

! requestDenied()}

Type managerR specifies a choice (⊕) between two outputs (!): either the out-
put of message requestApproved or of message requestDenied. In the case
of the requestApproved choice, the type specifies that the process proceeds
by internally exchanging (τ) message orderTransfer and by receiving message
transferDate. This behavior results from the combination of the rest of the
manager role in the client conversation (the output of message orderTransfer,
typed ! orderTransfer(T1, T2)) with the type of the CreditTransfer service:

creditTransferB " ? orderTransfer(T1, T2).? transferDate(T4)

where the synchronization in message orderTransfer between the manager and
the bank is recorded in managerR, using the τ annotation. Such flexibility in

combining behavioral types is crucial to capture conversations between several
parties, including scenarios where parties dynamically join and leave conversa-
tions, which is the case of the CreditTransfer service.

The CreditApproval service is then characterized by the type:

creditApprovalB "
? requestApproval(managerR, T1, T2, T3).⊕ {τ reject(); τ accept()}

which specifies the reception of a requestApproval message, carrying a conver-
sation identifier in which the manager behaves as specified by managerR, after
which proceeding as the internal choice between messages reject and accept.

The type of the manager process exposes the required and provided services:

ManagerProcess ::
Manager : [(? CreditApproval(creditApprovalB)
|
BankATM : [(! CreditTransfer(creditTransferB)]

service CreditApproval is published (?) in conversation Manager , and service
CreditTransfer is expected (!) in conversation BankATM .

6 Further Reading and Closing Remarks

The Conversation Calculus was first introduced in [26], where we also presented a
basic study of its behavioral semantics. In [13, 14] we introduced the conversation
type theory, which provides analysis techniques for conversation fidelity and
deadlock absence, while addressing challenging scenarios involving dynamically
established conversations between several partners. Analysis techniques based on
the CC where mainly developed by Hugo Vieira in his PhD thesis [27]. Several
aspects of the Conversation Calculus have also been reported in several chapters
of the book which collects the key results of IP Sensoria Project [1, 3, 11, 17,
22]. More recently, in the context of the CMU-PT INTERFACES project [15],
we have been using the Conversation Calculus/Types suite to model and analyze
role based multiparty interactions in the setting of web business applications.

Our development of the concept of conversation was initially motivated by
the concept of binary session [19]; most session-based approaches to service in-
teractions only support binary interactions (simple client-server). Only recently
proposals have appeared to support multiparty interaction [5, 6, 16, 20, 28]. To
support multiparty interaction, [20] considers multiple session channels, while [5]
considers indexed session channels, both resorting to multiple communication
pathways. Our model follows an essentially different design, by letting a sin-
gle medium of interaction support concurrent multiparty interaction via labeled
messages. We base our approach on the notion of conversation context, and on
plain message-passing communication, which allows us to introduce the con-
versation initiation and conversation join constructs as idioms. This contrasts
with other session-based proposals for session and service-oriented models where

we find primitive service instantiation operations constructs (see, e.g., [7, 8, 23]).
Comparing with such models, the Conversation Calculus seems to be the simplest
extension to the pure π-calculus for modeling and analyzing complex multi-party
service based systems.

Ad hoc primitives to deal with exceptional behavior are present in several
service calculi. Perhaps surprisingly, our exception mechanism, although clearly
based on the canonical construct for functional languages, does not seem to have
been explored before us in process calculi (more recently, a similar mechanism
is explored in [9]). In [12] we showed how a transactional model supporting
compensations (the compensating CSP [10]) can be encoded in the Conversation
Calculus by means of its exception mechanism.

In our discussion on the underlying principles of the service-oriented compu-
tational model, we left out some interesting features of distributed systems that
we view as fairly alien to this setting. Forms of code migration (weak mobility)
seem to require an homogeneous execution support infrastructure, and thus to
run against the aim to get loose coupling, openness and independent evolution
of subsystems. In general, any mechanism relying on centralized control or au-
thority mechanisms, or that require a substantial degree on homogeneity in the
runtime infrastructure (e.g., strong mobility) also seem hard to accommodate.

To summarize, we have reviewed the Conversation Calculus, a core model for
service-oriented computation. The design of the Conversation Calculus, building
on the identification and analysis of general aspects of service-based systems, was
also discussed and justified in considerable detail. By means of a series of sim-
ple, yet hopefully illuminating examples, we have illustrated how our model may
express many service-oriented idioms, and complex multi-party service based
systems in a very natural way. Properties such as behavioral equivalence, con-
versation fidelity and deadlock absence may be verified on Conversation Calculus
models by means of several available techniques. The aim of providing simpler,
more expressive, and usable techniques for complex software systems is certainly
a good justification for introducing yet another core model or language, in par-
ticular if such model is expressed as a tiny layer on top of a purest foundational
model; the π calculus. We leave for others to judge the extent to which such aim
was achieved by the Conversation Calculus and related techniques.
Acknowledgments We thank IP Sensoria EU IST FP6 - 2005-2010 and Carnegie
Mellon|PT INTERFACES 44-2009-12. We also thank Lúıs Barbosa and Markus
Lumpe for inviting us for the FACS’10 keynote, on which this tutorial is based.

References

1. L. Acciai, C. Bodei, M. Boreale, R. Bruni, and H. Vieira. Rigorous Software Engi-
neering for Service-Oriented Systems, volume 6582 of Lecture Notes in Computer
Science, chapter Static Analysis Techniques for Session-Oriented Calculi. Springer-
Verlag, 2011.

2. A. Alves et al. Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS, 2006.

3. M. Bartoletti, L. Caires, I. Lanese, F. Mazzanti, D. Sangiorgi, H. Vieira, and
R. Zunino. Rigorous Software Engineering for Service-Oriented Systems, vol-
ume 6582 of Lecture Notes in Computer Science, chapter Tools and Verification.
Springer-Verlag, 2011.

4. M. Beisiegel et al. Service Component Architecture: Building Systems using a
Service-Oriented Architecture, version 0.9. Technical report, BEA, IBM, Inter-
face21, IONA, Oracle, SAP, Siebel, Sybase Joint Whitepaper, 2005.

5. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global Progress in Dynamically Interleaved Multiparty Sessions.
In F. van Breugel and M. Chechik, editors, CONCUR 2008, 19th International
Conference on Concurrency Theory, Proceedings, volume 5201 of Lecture Notes in
Computer Science, pages 418–433. Springer-Verlag, 2008.

6. E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Cal-
culus. In G. Barthe and C. Fournet, editors, TGC 2007, Third International Sym-
posium on Trustworthy Global Computing, Revised Selected Papers, volume 4912
of Lecture Notes in Computer Science, pages 240–256. Springer-Verlag, 2008.

7. M. Boreale, R. Bruni, L. Caires, R. D. Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC:
a Service Centered Calculus. In Proceedings of WS-FM 2006, 3rd International
Workshop on Web Services and Formal Methods, volume 4184 of Lecture Notes in
Computer Science, pages 38–57. Springer-Verlag, 2006.

8. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for
Structured Service Programming. In G. Barthe and F. de Boer, editors, FMOODS
2008, 10th IFIP WG 6.1 International Conference on Formal Methods for Open
Object-Based Distributed Systems, Proceedings, volume 5051 of Lecture Notes in
Computer Science, pages 19–38. Springer-Verlag, 2008.

9. M. Bravetti and G. Zavattaro. On the Expressive Power of Process Interruption
and Compensation. Mathematical Structures in Computer Science, 19(3):565–599,
2009.

10. M. Butler and C. Ferreira. A Process Compensation Language. In W. Grieskamp,
T. Santen, and B. Stoddart, editors, IFM 2000, Second International Conference on
Integrated Formal Methods, Proceedings, volume 1945 of Lecture Notes in Computer
Science, pages 61–76. Springer-Verlag, 2000.

11. L. Caires, R. De Nicola, R. Pugliese, V. Vasconcelos, and G. Zavattaro. Rigor-
ous Software Engineering for Service-Oriented Systems, volume 6582 of Lecture
Notes in Computer Science, chapter Core Calculi for Service-Oriented Computing.
Springer-Verlag, 2011.

12. L. Caires, C. Ferreira, and H. Vieira. A Process Calculus Analysis of Compensa-
tions. In C. Kaklamanis and F. Nielson, editors, TGC 2008, Fourth International
Symposium on Trustworthy Global Computing, Revised Selected Papers, volume
5474 of Lecture Notes in Computer Science, pages 87–103. Springer-Verlag, 2009.

13. L. Caires and H. Vieira. Conversation Types. In G. Castagna, editor, ESOP 2009,
18th European Symposium on Programming, Proceedings, volume 5502 of Lecture
Notes in Computer Science, pages 285–300. Springer-Verlag, 2009.

14. L. Caires and H. Vieira. Conversation Types. Theoretical Computer Science,
411(51-52):4399–4440, 2010.

15. CMU-PT INTERFACES Project. Website: http://ctp.di.fct.unl.pt/interfaces/.
16. P.-M. Deniélou and N. Yoshida. Dynamic Multirole Session Types. In T. Ball and

M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, pages 435–446. ACM, 2011.

17. C. Ferreira, I. Lanese, A. Ravara, H. Vieira, and G. Zavattaro. Rigorous Soft-
ware Engineering for Service-Oriented Systems, volume 6582 of Lecture Notes in
Computer Science, chapter Advanced Mechanisms for Service Combination and
Transactions. Springer-Verlag, 2011.

18. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A Formal Approach to Service Component
Architecture. In M. Bravetti, M. N., and G. Zavattaro, editors, Web Services
and Formal Methods, Third International Workshop,WS-FM 2006, volume 4184 of
Lecture Notes in Computer Science, pages 193–213. Springer-Verlag, 2006.

19. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Dis-
cipline for Structured Communication-Based Programming. In C. Hankin, editor,
ESOP’98, 7th European Symposium on Programming,ETAPS’98, volume 1381 of
Lecture Notes in Computer Science, pages 122–138. Springer, 1998.

20. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In G. Necula and P. Wadler, editors, POPL 2008, 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Proceedings, pages 273–284.
ACM Press, 2008.

21. IP Sensoria Project. Website: http://www.sensoria-ist.eu/.
22. I. Lanese, A. Ravara, and H. Vieira. Rigorous Software Engineering for Service-

Oriented Systems, volume 6582 of Lecture Notes in Computer Science, chapter
Behavioral Theory for Session-Oriented Calculi. Springer-Verlag, 2011.

23. I. Lanese, V. T. Vasconcelos, F. Martins, and A. Ravara. Disciplining Orchestration
and Conversation in Service-Oriented Computing. In 5th International Conference
on Software Engineering and Formal Methods, pages 305–314. IEEE Computer
Society Press, 2007.

24. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II.
Information and Computation, 100(1):1–77, 1992.

25. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

26. H. Vieira, L. Caires, and J. Seco. The Conversation Calculus: A Model of Service-
Oriented Computation. In S. Drossopoulou, editor, ESOP 2008, 17th European
Symposium on Programming, Proceedings, volume 4960 of Lecture Notes in Com-
puter Science, pages 269–283. Springer-Verlag, 2008.

27. H. T. Vieira. A Calculus for Modeling and Analyzing Conversations in Service-
Oriented Computing. PhD thesis, Universidade Nova de Lisboa, 2010.

28. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised Multiparty Ses-
sion Types. In C.-H. L. Ong, editor, Foundations of Software Science and Compu-
tational Structures, 13th International Conference, FOSSACS 2010, Proceedings,
volume 6014 of Lecture Notes in Computer Science, pages 128–145. Springer, 2010.

