
Distributed Adaptation of Dining Philosophers

S. Andova1, L.P.J. Groenewegen2,⋆, and E.P. de Vink1

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

2 FaST-Group, LIACS, Leiden University, The Netherlands

Abstract. Adaptation of a component-based system can be achieved in
the coordination modelling language Paradigm through the special com-
ponent McPal. McPal regulates the propagation of new behaviour and
guides the changes in the components and in their coordination. Here
we show how McPal may delegate part of its control to local adapta-
tion managers, created on-the-fly, allowing for distribution of the adap-
tation indeed. We illustrate the approach for the well-known example
of the dining philosophers problem, by modelling the migration from a
deadlock-prone solution to a deadlock-free starvation-free solution with-
out any system quiescence. The adaptation goes through various stages,
exhibiting shifting control among McPal and its helpers, and changing
degrees of orchestrated and choreographic collaboration.

1 Introduction

Many systems today are affected by changes in their operational environment
when running, while they cannot be shutdown to be updated and restarted again.
Instead, dynamic adaptive systems must be able to change their behaviour on-
the-fly and to self-manage adaptation steps accommodating a new policy.

Dynamic adaptive systems consist of interacting components, usually dis-
tributed, and possibly hierarchically organized. In such a system, components
may start adaptation in response to various triggers, such as changes in the un-
derlying execution environment (e.g. failures or network congestion) or changes
of requirements (e.g. imposed by the user). Adaptation of one component in the
system may inadvertently influence the behavior of the components it is inter-
acting with, possibly bringing about a cascade of dynamic changes in other parts
of the system. Therefore, the adaptation of the system is a combination of local
changes per component and global adaptation across components and hosts in
the distributed system. As such, adaptation has to be performed in a consistent
and coordinated manner so that the functionality of each separate component
and of the system as a whole are preserved while the adaptation is in progress.
Due to the complexity of the distributed dynamics of a system adapting on-the-
fly, it may be rather difficult to understand whether a realization of a change
plan indeed allows the system to perform as it is supposed to, and does not
violate any of its requirements, during and after system adaptation.

⋆ Corresponding author, email: luuk@liacs.nl

One way to circumvent this is to formally model and analyze the system
behaviour and the adaptation changes to be followed. In [13, 3, 6] we advocated
how orchestrated adaptation can conveniently be captured in the coordination
modeling language Paradigm. In Paradigm, a system architecture is organized
along specific collaboration dimensions, called partitions. A partition is a well-
chosen set of sub-behaviours of the local behaviour of a component, specifying
the phases the component goes through when a protocol is executed. In the
protocol, at a higher layer in the architecture, the component participates via
its role, an abstract representation of the phases. A protocol manager coordinates
the phase transfers for the components involved. In fact, in Paradigm, dynamic
adaptation is modeled as just another collaboration protocol, coordinated by
a special component McPal [13, 3, 6]. As progress within a phase is completely
local to the component, the use of phase transfer instead of state transfer, is the
key concept of Paradigm. This makes it possible to model, at the same time and
separated from one another, both behavioural local changes per component, and
global changes across architectural layers. The formal semantics of Paradigm
then allows for a rigorous analysis of the adaptation policy [5], at the local level
of the components as well as in the coordination of the changes across adaptive
parts of the distributed system.

The suitability of Paradigm to model distributed adaptation strategies, ex-
tending our earlier centralized studies, is shown in this paper on a dining philoso-
phers example. A deadlock-prone solution of the dining philosophers problem is
taken as a source system, to be migrated to a target solution, both deadlock-free
and starvation-free. Both systems are modeled in Paradigm, as is the migrating
from source to target. As typical for dynamic adaptation in Paradigm, McPal

regulates the propagation of new behaviour and guides the structural changes
in the components and in their coordination. But here, although adding to the
complexity of the solution, McPal delegates part of its control to local adapta-
tion managers McPhil, one for each philosopher, while McPal keeps controlling
them globally. Thus, we argue, the component-based character of the Paradigm
language allows for modeling distributed adaptation: separate modeling of local
strategies, coordinated by McPal as system adaptation manager. The main con-
tribution of the paper is, it reveals the distributed potential of system adaptation
within Paradigm. In Section 6 we elaborate on it.

Related work In recent years a number of approaches has been proposed ad-
dressing several issues of dynamic system adaptation. Some of them [14, 8, 18]
focus on adaptive software architectures, where functionalities, considered as
black boxes, are connected via ports. Formal modeling of dynamic adaptation
has been addressed in e.g. [16, 2, 10, 22]. However, none of these approaches deal
with distribution explicitly. In [11, 12] dynamic adaptation is formally modeled
by means of graph transformation. Although graph transformation techniques
are well suited for distributed systems, there is no explicit focus on modeling
distributed control for adaptation in the papers mentioned.

2

Some aspects of dynamic adaptation of distributed systems, tailored for the
domains considered, have been treated in [1, 17]. In the domain of Web Ser-
vices, [1] proposes a method to generate distributed adapters from given service
descriptions. [17] focuses on modeling and deployment of distributed resources
for adaptive services in a mobile environment. A framework for formal mod-
eling and verification of dynamic adaptation of distributed system, based on a
transitional-invariant lattice technique, is proposed in [9]. The approach uses the-
orem proving techniques to show that during and after adaptation, the system
always satisfies the transitional-invariants. This adaptation framework, however,
does not support distribution in the style discussed in this paper: distributing
adaptation tasks among local adaptation conductors by delegation.

The Conductor framework [21] for distributed adaptation allows for dynamic
deployment of multiple adaptation conductors at various points in a network, an
approach which is more suitable for complex and heterogeneous collaborations.
It includes a distributed planning algorithm which determines for a triggered
adaptation the most appropriate combination of conductors, distributed across
the network. In [19] a distributed adaptation model for component-based appli-
cations is proposed. The model consists of two types of functionalities: manda-
tory that manage basic adaptation operations and optional that can be used
to distribute adaptation activities. This way the adaptation mechanism of the
whole system can be hierarchically organized, resembling as such our hierarchical
structures of McPal conductors. However, both in [19] and [21], the main focus
is on designing the adaptation itself, while the formal modeling and analysis
of the adaptation remains uncovered, positioning them complementary to our
treatment of distributed adaptation.

Structure of the paper Section 2 is an overview of Paradigm through the example
of the deadlock-prone solution as source system. The target system, deadlock and
starvation free, is in Section 3. Section 4 gives the distributed migration set-up
from source to target system, with Section 5 discussing coordination technicali-
ties separately. Section 6 wraps up and provides conclusions.

2 Dining philosophers as-is: deadlock-prone

This section presents a first solution to the dining philosopher problem of five
Phili components sharing five Fork i components, i = 1..5. We shall refer to this
solution as the as-is system or just as-is. The solution itself is the well-known and
failing deadlock-prone solution: Any Phili, while thinking and getting hungry,
first waits until the left Fork i can be got, then gets it, waits until the right
Fork i+1 can be got, gets it and once having both forks starts eating. After
the eating has satisfied her hunger, Phili lays down both forks and returns to
thinking again. As an extra requirement, the as-is system has the ability to
migrate from its ongoing as-is solution behaviour to to-be solution behaviour,
unknown as yet but hopefully better than the failing as-is behaviour.

3

Apparently, steps taken by Phils and step-like status changes of Forks are to
be consistently aligned in accordance to the particular as-is solution. This means,
behaviour of the five Phils and Forks has to be coordinated such that the as-is
solution is realized, failing as it may. Based on its capabilities for keeping ongoing
behaviour constrained, the Paradigm language can specify coordination solutions
not only for foreseen situations like the as-is system, but also for originally
unforeseen migration to a still unknown to-be solution. Even more, Paradigm
allows for really smooth migrations, i.e. with ongoing but gradually changing
coordination during adaptation from as-is to to-be. In view thereof, one may
have the special component McPal in a Paradigm model, at first not influencing
the model at all, but hibernatingly present to guide upcoming system migration.

Through the example of the as-is solution for the five Phil and Fork compo-
nents with a hibernating McPal in place, we shall briefly introduce Paradigm.
The coordination modeling language Paradigm has five basic notions: STD,
phase, (connecting) trap, role and consistency rule. For more elaborate intro-
ductions see [5] (in-depth) or [4] (more intuitive).

(c)(a) (b)

layDown

Phili

Phili(Eater)
done

AskingForks

take

EatingThinking

getHungry

request

AllowedDisallowed

request

request

Disallowed

Allowed

done

Fig. 1. The five Phili: (a) STD, (b) role Eater, (c) phase/trap constraints.

Component behaviour is specified by STDs, state-transition diagrams. Figure 1a
gives the STD for each Phili in UML style. It says, Phili starts in state Thinking

and has forever cycling behaviour, passing through her three states by repeatedly
taking her three actions getHungry, take, layDown in that order. When Phili gets
hungry in Thinking, she takes action getHungry, thus arriving in AskingForks.
In accordance to the as-is solution, when an arbitrary Phili is sojourning in
state AskingForks, the following is supposed to happen subsequently: (i) Fork i

is claimed by her; (ii) Fork i is assigned to her; (iii) Fork i+1 is claimed by her;
(iv) Fork i+1 is assigned to her. Thereupon Phili performs action take for taking
up the two Forks assigned to her by now from the table, thus arriving in state
Eating. Later when no longer hungry, Phili goes from Eating to Thinking by
taking action layDown for returning both Forks to the table. We see, claiming
and assigning of Forks is not reflected in the STD steps of Phili.

In Paradigm, such claiming and assigning is to be modeled through tempo-
rary constraints on STD behaviour; here on Fork i and on Fork i+1 behaviour
influenced by Phili, as we shall see below. What we can observe already, also
Phili’s STD behaviour is like-wise influenced, i.e. temporarily constrained, by
the combined behaviours of Fork i and Fork i+1, as Phili can proceed to state
Eating only if both Forks have been assigned to her and remain so. In addition,
as long as the Forks remain assigned to her, Phili can return to Thinking but
she should not be able to proceed to AskingForks while holding them.

4

In general, within Paradigm a component participating in a collaboration
does not contribute to the collaboration via its STD behaviour directly, but
via a so-called role. Such a role is a different, global STD for the component
built on top of the original STD, dealing with the temporary constraints that
are important to the collaboration. The role contributes relevant essence only,
role-wise distilled from the more detailed local component behaviour.

Figure 1b specifies STD role Phili(Eater) contributed by Phili to the collab-
oration called Phil2Forks i. States of role Phili(Eater) are referred to as phases

of the Phili STD: temporarily valid behavioural constraints imposed on Phili.
Figure 1b mentions two phases: Disallowed and Allowed. Figure 1c graphically
couples the two phases to Phili, by representing each phase as a subSTD, a
scaled-down part of Phili. As one can see, phase Disallowed (on top) prohibits
Phili to be in Eating but she may get as far as AskingForks. Contrarily, phase
Allowed (at bottom) permits Phili to enter and to leave Eating once, but re-
turning to AskingForks is not allowed.

Phase drawings are additionally decorated with one or more polygons, each
polygon grouping states of that phase. In the simple case of Figure 1 polygons are
rectangles comprising a single state. Polygons visualize so-called traps: a trap,
as a subset of states in a phase, once entered, cannot be left as long as the phase
remains the constraint imposed. A trap serves as a guard for a phase transfer
(in role STDs). Therefore, traps label transitions in a role STD, cf. Figure 1b:
the guard marking the transition from the previous phase (it is a trap of) to a
next phase. In such a case, where all states in a trap are indeed states of the
next phase, the trap is called connecting from the previous phase to the next.

Thus, role Phili(Eater) behaviour, see Figure 1b, expresses the ongoing al-
ternation between Disallowed and Allowed: phase transfer from Disallowed to
Allowed only happens after connecting trap request has been entered; similarly,
phase transfer from Allowed to Disallowed only happens after connecting trap
done has been entered. Moreover, an explicitly prolonged sojourn in Disallowed

can happen after the (connecting) trap request has been entered.

(b) (c)

(d) (e)

(a)

ClaimedFreed

got

gone

got

Fork i(ForLH)Freed Claimed

got
gone

ClaimedFreed

got

gone

got

Freed Claimed Fork i(ForRH)

got
gone

AtLH
toRH

AtRH

Forki

RH? LH?

toLH

tryRH

tryLH

return

return

Fig. 2. Five Fork i: (a) STD, (b,d) phase/trap constraints per (c,e) ForLH, ForRH role.

5

The STD Fork i is visualized in Figure 2a. State AtRH means, Fork i is assigned
to (the right hand of) Phili−1. Similarly, state AtLH means, Fork i is assigned
to (the left hand of) Phili. To express not being assigned to any of the two
philosophers Phili−1 or Phili, STD Fork i is on the table, but in two different
states LH? and RH?, reflecting a different bias: in LH? the bias is to Phili
and in RH? the bias is to Phili−1. In addition, upon returning to the table
from having been assigned to a philosopher’s hand, the bias is first to the other
philosopher. This means, each Fork follows a round robin approach for honouring
requests from Phili−1 and Phili, rather than a nondeterministic one. Figure 2
also presents two roles of Fork i: (c) role ForLH for collaborating with Phili
(left hand) and (e) role ForRH for collaborating with Phili−1 (right hand). Role
ForLH is based on phases Freed and Claimed and their connecting traps gone

and got as given in part 2b. Note for instance, how in Freed of role ForLH the
particular Fork i is being steered towards giving up staying assigned to Phili’s
left hand, thus returning to the table with the possibility to get assigned to
Phili−1’s right hand but, for the moment, not to Phili’s left hand.

(a) (b) (c)

prepared

ContentObserving

McPal

giveOut
StartMigr

wantChange

cleanUp

JITting

Hibernating

Hibernating

McPal(Evol)

Fig. 3. McPal: (a) STD, (b) phase/trap constraint (b,d) role McPal(Evol).

The five Phils and Forks are all component ingredients needed for the as-
is system. In view of still unknown later adaptation, an extra STD McPal is
in place, see Figure 3a. Here McPal is in its hibernating form, not interfering
at all with the as-is system, but with the ability to interfere with itself first,
thus adapting itself and then later, as a consequence of its gained dynamics,
to interfere with the as-is system. Figure 3bc underline this idea: (i) via phase
Hibernating being the full McPal behaviour as long as McPal has not adapted
itself yet; (ii) via role Evol which is restricted to sojourning in phase Hibernating

as long as McPal remains unchanged. Thus we see, McPal starts in Observing

and via JITting can go as far as StartMigr, which coincides with entering trap
prepared of Hibernating. What cannot be seen from the figure but only from the
consistency rules given below, through step giveOut leading into trap prepared,
the hibernating McPal will extend the Paradigm as-is model specification with
a specification of a to-be model as well as with a well-fitting model fragment for
possible migration trajectories from as-is to to-be. To this aim, McPal embodies
the reflectivity of a Paradigm model, by owning a local variable Crs where it
stores the current model specification: consistency rules with all STDs, phases,
traps and roles involved. Thus, by taking step giveOut, Crs will be extended,
with at least one step series from StartMigr to Content, such that the no-longer-
hibernating McPal is able to coordinate the various migration trajectories. Hav-
ing returned to phase Hibernating, step cleanUp from Content to Observing

6

then refreshes Crs by removing all model fragments obsolete by then, keeping
the to-be model only. Note, so far McPal is the same as in [3, 6].

In terms of the STDs, phases, traps and roles, Paradigm defines the ‘coor-
dination glue’ between them through its notion of a consistency rule, being a
synchronization of single role steps from different roles. Such a consistency rule
may be coupled –additionally synchronized– with one detailed step of a so-called
conductor component. Also local variables, such as Crs, can be updated. A con-
sistency rule has as format: (i) it contains one asterisk ∗, with ∗’s right-hand
side nonempty; (ii) optionally, at the left-hand side of ∗ it gives the one con-
ductor step if relevant; (iii) at the right-hand side of ∗ it gives the listing of the
role steps being synchronized; (iv) optionally, at the right-hand side ∗ a change
clause can be given for updating variables. A consistency rule with a conduc-
tor step is called an orchestration step, a consistency rule without it is called a
choreography step.

The set of consistency rules for the coordination of the as-is system, with
McPal in place, is as follows.

∗ Phili(Eater) : Disallowed
request
→ Disallowed, Fork i(ForLH) : Freed

gone
→ Claimed (1)

∗ Fork i(ForLH) : Claimed
got
→ Claimed, Fork i+1(ForRH) : Freed

gone
→ Claimed (2)

∗ Fork i+1(ForRH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed (3)

∗ Phili(Eater) : Allowed
done
→ Disallowed, (4)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

McPal : JITting
giveOut

→ StartMigr ∗ McPal : [Crs := Crs + Crsmigr + Crs toBe] (5)

McPal : Content
cleanUp

→ Observing ∗ McPal : [Crs := Crs toBe] (6)

It is through consistency rules (1)–(4) the deadlock-prone solution is achieved.
Their choreographic specification can be read like this (numbers referring to
rules): (1) if Phili wants to eat and her left Fork i hasn’t been claimed yet, it is
claimed; (2) if Phili has got her left Fork i assigned and her right Fork i+1 hasn’t
been claimed yet, it is claimed; (3) if Phili has got her right Fork i+1 assigned too,
she is allowed to eat and can start doing so; (4) if Phili stops eating, her Fork i and
Fork i+1 are being freed and she is prohibited to eat any longer. In addition, rules
(5)–(6) are orchestration steps with McPal as conductor, not influencing ongoing
collaborative as-is behaviour, but extending the as-is model specification (5)
and reducing the model specification to the to-be specification aimed at (6),
after the migration has been done. The migration itself is not specified here,
as neither the to-be situation nor intermediate migration are known at present.
Please note, Crs is a variable of McPal. Similarly, both Crsmigr and Crs toBe are
variables containing consistency rules too, which means, their final value will be
determined in view of the particular migration trajectory traversed.

3 Dining philosophers to-be: no deadlock, no starvation

Before addressing migration in Sections 4 and 5, this section presents the goal to
be reached by the migration, referred to as the to-be system or to-be solution. The

7

problem situation is the same as the one of the as-is situation, the five Phili and
five Fork i. But, the solution is better now: no deadlock and also no starvation.
This is achieved in the following well-known way: for at least one Phili, but not
for all five, the order of claiming Fork i and Fork i+1 is being reversed.

For the Paradigm model of the to-be solution this means, all STDs, phases,
traps and roles remain the same, but the consistency rules are different. For
their formulation we need some extra notation. Let the index sets L,R be a
non-empty disjoint partitioning of {1..5}, L referring to those Phili s for which
the left Fork i is claimed first, and R referring to those Philis for which the right
Fork i+1 is claimed first. Here we use i ∈ L, j ∈ R.

∗ Phili(Eater) : Disallowed
request
→ Disallowed, Fork i(ForLH) : Freed

gone
→ Claimed (7)

∗ Fork i(ForLH) : Claimed
got
→ Claimed, Fork i+1(ForRH) : Freed

gone
→ Claimed (8)

∗ Fork i+1(ForRH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed (9)

∗ Phili(Eater) : Allowed
done
→ Disallowed, (10)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

∗ Philj(Eater) : Disallowed
request
→ Disallowed, Forkj+1(ForRH) : Freed

gone
→ Claimed (11)

∗ Forkj+1(ForRH) : Claimed
got
→ Claimed, Forkj(ForLH) : Freed

gone
→ Claimed (12)

∗ Forkj(ForLH) : Claimed
got
→ Claimed, Philj(Eater) : Disallowed

request
→ Allowed (13)

∗ Philj(Eater) : Allowed
done
→ Disallowed, (14)

Forkj(ForLH) : Claimed
got
→ Freed, Forkj+1(ForRH) : Claimed

got
→ Freed

McPal : JITting
giveOut

→ StartMigr ∗ McPal : [Crs := Crs + Crsmigr + Crs toBe] (15)

McPal : Content
cleanUp

→ Observing ∗ McPal : [Crs := Crs toBe] (16)

Rules (7)–(10) together with (15)–(16) are exactly the rules (1)–(6) from Sec-
tion 2. It is not difficult to observe, rules (11)–(14) mirror (7)–(10) by reversing
the order of claiming indeed. Furthermore, note that only the consistency rules
have been adapted, so the change remains restricted to the ‘coordination glue’
between the components, particularly the choreography steps only. McPal is in
hibernation, as usual with no migration going.

4 Migration coordination set-up among helpers

As Section 3 announced, the migration to be realized is from the as-is situation
to the to-be situation, i.e. starting from the deadlock-prone solution of the dining
philosophers problem to the well-known, far better deadlock-free and starvation-
free solution, where at least one Phili gets her Fork i and Fork i+1 assigned in
a different order. So, there is ample room for different to-be solutions meeting
the requirements. Also, for each to-be solution different migration trajectories
towards it can be developed.

8

In view of this observation, we restrict the range of our to-be solutions as
follows: regarding the sets L,R introduced above –claiming left fork first for
Phili with i ∈ L versus claiming right fork first for Philj with j ∈ R– we require
L and R to have either 2 or 3 elements. Moreover, if L = {i, i′} then Phili and
Phili′ are not adjacent, i.e. i = i′ + 2 or i = i′ + 3, and similarly, if R = {j, j′}
then Philj and Philj′ are not adjacent. Thus, for the to-be solution, of the two
groups of Phils one group consists of two Phils and the other group consists of
three Phils. In addition, the Phils from the group of two are not neighbours.
This reduction in admitted to-be solutions will illustrate the interplay of cen-
tral change management and local change management more clearly. Moreover,
it helps us in substantially restricting the range of migration trajectories, still
showing the dynamic flexibility of the migration1.

(a) (b)

≪orchestration≫≪choreography≫ McPhili

Forki Phili Forki+1

Phil2Forksi

PhiliForki Forki+1

Phil2Forksi

ForRHForLH EaterForRHForLH Eater

Fig. 4. Two collaboration snapshots (a) during hibernation, (b) during migration.

Before addressing the actual migration through coordination not yet specified,
we want to clarify an important structural difference in the collaboration of Phili
and her two forks Fork i and Fork i+1: during McPal’s hibernation versus dur-
ing migration. Figure 4a, in UML-style, gives collaboration diagram Phil2Forks i

during hibernation. It says, the three components Phili, Fork i, Fork i+1 are in-
volved in it and, in line with the Paradigm model, they contribute to it via
their respective roles Eater, ForLH, ForRH. This makes the collaboration into a
choreography. Note, this architectural snapshot is valid for the as-is as well as
for the to-be solution, the difference being in the behaviour only.

During the migration the collaboration has a slightly different structure,
however, see Figure 4b. For each Phili an extra component McPhili is involved,
meant as delegated helper of McPal for the Phil2Forks i collaboration only, to
enlarge McPal’s influence. As we shall see below, McPhili joins the collaboration
as a new local driver of the ongoing choreography, thereby turning Phil2Forks i

into an orchestration with McPhili as its conductor, with essentially the same
collaborative behaviour for a short while. Then, as conductor in place it migrates
the orchestration and informs McPal about the result achieved so far, whereupon
McPal decides about keeping or altering a result. Then McPhili does so and steps
back as conductor, turning collaboration Phil2Forks i into a choreography again.

McPal’s actual migration activity is outlined in Figure 5: McPal, upon awak-
ening from phase Hibernating, becomes active within phase Migrating as main
conductor of the migration orchestration. Here it immediately delegates the ac-
tual migration coordination to its five helpers McPhili, by taking step delegate.

1 For an animated migration trajectory, see the extended version of the FACS 2010
presentation at http://www.win.tue.nl/∼evink/research/paradigm.html.

9

(a) (b) (c)
JITting StartMigr

giveOut

Observing Content

Gathering

doubleDeflexLR

Delegated

doubleDeflexRL
singleDeflexLR
singleDeflexRL

singleSwapLR
singleSwapRL

goAheadLR
goAheadRL

Migrating

Hibernating

cleanUp

closewantChange

delegate

McPal

collect

McPal(Evol)

prepared

prepared
Hibernating

Migrating

done

done

Fig. 5. McPal during migration: (a) STD, (b) phase/trap constraints, (c) role Evol.

In doing so, McPal provides each McPhili with the orchestration rules for the
local migration, while keeping the as-is choreography rules. Arrived in state
Delegated, McPal then waits for the local results from the McPhili, being pre-
liminary only. The preliminary results can be of two kinds: either Phili (still)
belongs to L or Phili (now) belongs to R. Depending on the combined results of
the five McPhili, conductor McPal takes one out of eight possible steps to state
Gathering: by possibly letting zero, one or two specific McPhili adjust their
preliminary result when finalizing and by letting the other McPhili make their
preliminary results permanent. In state Gathering, McPal starts collecting the
five sets Crs i,toBe of consistency rules the various McPhili have to deliver when
finalizing: the to-be choreography local to Phil2Forks i, constituting McPhili’s
final result. To this aim McPal takes step collect five times, one per McPhili. Af-
ter having collected the five sets Crs i,toBe and after the five helper McPhili have
stopped their activities, McPal takes step close to state Content, thus entering
trap done marking the final stage of the migration phase.

(c)(a) (b)

Awake

Dozing

triv

ToL ToR

ToBeL ToBeR

NonExisting

JoiningIn

away

donedone

Passive

Retreating

McPhil i

conductToR

conductToL

triv

Passive

halfwayL halfwayR

Active

EndAsL EndAsR

Retreating

donedonechoreofyToRchoreofyToL

choreofyToLchoreofyToR

yawn

immobilize

takeOver

stir

conductToL conductToR

away

yawn
McPhil i(Evol)

halfwayL

Active

halfwayR

EndAsL EndAsR

halfwayR halfwayL

Fig. 6. McPhili during migration: (a) STD, (b) phase/trap constraints, (c) role Evol.

10

The overall migration conducting of McPal sets the stage for the local mi-
gration exerted by McPhili on the ongoing collaboration Phil2Forks i. The be-
haviour of each McPhili is drawn in Figure 6a. From starting state NonExisting

to Awake it takes step stir, to get ready for whatever it has to do. From Awake it
takes step takeOver to state JoiningIn, thereby removing the as-is choreography
rules from the (local) model specification Crs i, thus keeping the orchestration
rules only, that were already added earlier by McPal when delegating the local
migration to McPhili.

By taking step conductToL from state JoiningIn to state ToL and by iterat-
ing step conductToL in ToL, helper McPhili sticks to the as-is orchestration, for
the L-order that is. Similarly, by taking step conductToR from state JoiningIn to
state ToR and by iterating step conductToR in ToR, helper McPhili swaps the
orchestration of the as-is choreography to the orchestration for the R-order. From
state ToL helper McPhili can, apart from iterating, either take step choreofyToL

to state ToBeL, in which case McPhili sticks to the L-order but turns the or-
chestration back into the equivalent choreography, or McPhili can take step
choreofyToR to state ToBeR, in which case McPhili swaps to the R-order (on
second thought, instigated by McPal) and moreover turns the orchestration into
the equivalent choreography for the R-order. Analogously, from state ToR helper
McPhili can, apart from iterating, either take step choreofyToR to state ToBeR,
in which case McPhili sticks to the R-order but turns the orchestration into the
equivalent choreography, or McPhili can take step choreofyToL to state ToBeL,
in which case McPhili swaps back to the L-order and moreover turns the or-
chestration into the equivalent choreography for the L-order. From then on, in
two consecutive steps, viz. yawn and immobilize, helper McPhili returns to state
NonExisting.

Figure 6b presents the phase and trap constraints on McPhili. Based on
these constraints, role McPhili(Evol) is given in part 6c. In phase Passive helper
McPhili can’t do anything. In phase Active it can go as far as providing to
McPal its preliminary result, being of two possible kinds, one per trap halfwayL

or halfwayR. Phases EndAsL and EndAsR correspond to the two final results
possible, the original L-order or the new R-order, respectively, available once
trap done has been entered. Finally, in phase Retreating helper McPhili enters
trap away. After that it returns to Passive where it can’t do anything.

It is stressed all this is to happen dynamically, on-the-fly, without any sys-
tem halting. Consistency rules specifying this turn out to be quite technical.
Therefore we discuss them separately in Section 5.

5 Migration coordination distributed among helpers

The consistency rules below specify the coordination according to Section 4’s mi-
gration set-up. The technicalities of the rules mainly arise where change clauses
manipulate sets of rules and model fragments aiming to influence the migration.
Computing in terms of rules timely adapts the coordination strategy, gracefully
enforcing the system’s change. The following sets of consistency rules occur.

11

Crs i,asIs ::= choreography of Phil2Forks i, L-order only (as in Section 2)

Crshibr ::= orchestration conducted by McPal during phase Hibernating

CrsnoHb ::= orchestration conducted by McPal during phase Migrating

Crs i,orch ::= orchestration conducted by McPhili

Crs i,toBeL ::= choreography of Phil2Forks i in L-order

Crs i,toBeR ::= choreography of Phil2Forks i in R-order

Crsmigr ::= CrsnoHb + Crs1,orch + · · · + Crs5,orch

The above sets are fixed, the sets below vary during the migration.

Crs ::= varying orchestration/choreography, not governed by McPhili

Crs i ::= varying McPhili-governed rule set for Phil2Forks i

Crs i,toBe ::= either Crs i,toBeL or Crs i,toBeR

Crs toBe ::= growing from Crshibr to Crshibr + Crs1,toBe + · · · + Crs5,toBe

The fixed sets of the consistency rules are specified first. Note, the variable sets
of consistency rules are updated through detailed change clauses involving the
fixed sets.2 Consistency rules (17)–(20) making up Crs i,asIs are exactly rules
(1)–(4) from Section 2.

∗ Phili(Eater) : Disallowed
request
→ Disallowed, Fork i(ForLH) : Freed

gone
→ Claimed (17)

∗ Fork i(ForLH) : Claimed
got
→ Claimed, Fork i+1(ForRH) : Freed

gone
→ Claimed (18)

∗ Fork i+1(ForRH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed (19)

∗ Phili(Eater) : Allowed
done
→ Disallowed, (20)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

Likewise, rules (21)–(22) making up Crshibr, are exactly rules (5)–(6) and also
rules (15)–(16) from Section 2 and 3, respectively.

McPal : JITting
giveOut

→ StartMigr ∗ McPal : [Crs := Crs + Crsmigr + Crs toBe] (21)

McPal : Content
cleanUp

→ Observing ∗ McPal : [Crs := Crs toBe] (22)

Note the two assignments to Crs. In rule (21), on the verge of migration, Crs

is extended with the rules in Crsmigr as well as in Crs toBe, the latter set at this
moment containing Crshibr only, already present in Crs. In rule (22), right after
the migration, Crs is replaced by Crs toBe, by then containing all choreography
rules computed by the five McPhil plus the two rules in Crshibr already present.

Next we present the consistency rule set CrsnoHb, rules (23) to (36), covering
the interaction of McPal and its five helper McPhili.

∗ McPal(Evol) : Hibernating
prepared

→ Migrating (23)

McPal : StartMigr
create
→ Delegated ∗ McPal : [Crs := CrsnoHb + Crshibr], (24)

McPhil1(Evol) : Passive
triv
→ Active, . . . , McPhil5(Evol) : Passive

triv
→ Active,

McPhil1[Crs1 := Crs1,asIs + Crs1,orch], . . . , McPhil5[Crs5 := Crs5,asIs + Crs5,orch]

2 One may call this behaviour computation, programming in terms of behavioural
constraints.

12

The set CrsnoHb contains the rule (23) for McPal’s own phase transfer from
Hibernating to initiate the migration. From then on one finds orchestration rules
for various conducting steps McPal may take within phase Migrating. Rule (24)
gets the five helper McPhili going, providing each with the local as-is choreo-
graphic rules as well as with its own orchestration rules, while McPal keeps those
from Crshibr and CrsnoHb as its own rules only.

The STD of McPal in Figure 5 provides eight transitions from state Delegated

to state Gathering. McPal takes a transition from its state Delegated to the
state Gathering once all five McPhili have reached a ‘halfway’ trap, either trap
halfwayL or trap halfwayR, in their phase Active. Therefore, the figure shows
eight different actions, dependent on the various combinations. By coupling a
local transition of McPal to a global step in the Evol role of the McPhili, the
proper transition is taken by McPal and the right continuation for the McPhili
is prescribed. Below, in the set of consistency rules CrsnoHb, we only provide the
rules for the actions doubleDeflexLR and singleDeflexRL, rules (25) and (26),
leaving the details of the remaining six rules to the reader.

McPal : Delegated
doubleDeflexLR

→ Gathering ∗ (25)

McPhil1(Evol) : Active
halfwayR

→ EndAsL, McPhil2(Evol) : Active
halfwayR

→ EndAsR,

McPhil3(Evol) : Active
halfwayR

→ EndAsL, McPhil4(Evol) : Active
halfwayR

→ EndAsR,

McPhil5(Evol) : Active
halfwayR

→ EndAsR

McPal : Delegated
singleDeflexRL

→ Gathering ∗ (26)

McPhili(Evol) : Active
halfwayR

→ EndAsR, McPhili+1(Evol) : Active
halfwayL

→ EndAsL,

McPhili+2(Evol) : Active
halfwayL

→ EndAsR, McPhili+3(Evol) : Active
halfwayL

→ EndAsL,

McPhili+4(Evol) : Active
halfwayL

→ EndAsL

six more rules similar to (25) and (26) (27)–(32)

Rules (25)–(32) deal with the eight scenarios for handling the combined pre-
liminary results from the five helper McPhili. In particular, rule (25) for action
doubleDeflexLR covers the case where all five McPhili follow R-order, so two
non-neighbouring ones of them have to be swapped (back) to L-order, here we
choose the first and the third. Similarly, rule (26) covers the case where exactly
one McPhili follows R-order, so another non-neighbouring one has to be swapped
to R-order (as yet), here we choose McPhili+2.

McPal : Gathering
collect
→ Gathering ∗ McPhili(Evol) : EndAsR

done
→ Retreating, (33)

McPal[Crs := Crs + Crs i, Crs toBe := Crs toBe + Crs i,toBe]

McPal : Gathering
collect
→ Gathering ∗ McPhili(Evol) : EndAsL

done
→ Retreating, (34)

McPal[Crs := Crs + Crs i, Crs toBe := Crs toBe + Crs i,toBe]

McPal : Gathering
close
→ Content ∗ (35)

McPhil1(Evol) : Retreating
away
→ Passive, . . . , McPhil5(Evol) : Retreating

away
→ Passive

∗ McPal(Evol) : Migrating
done
→ Hibernating (36)

13

Rules (33) and (34) incorporate the final local R-order or the final local L-
order, respectively, as final choreography part into the two variable sets Crs and
CrstoBe. Rule (35) passivates the five helper McPhili. Rule (36) allows McPal to
return into hibernation, mirroring rule (23).

The set Crs i,orch with the actual adaptation orchestration by McPhili, com-
prising the rules (37) to (68) below, follows the STD of Figure 6.

McPhili : Awake
takeOver

→ JoiningIn ∗ McPhili[Crs i := Crs i − Crs i,asIs] (37)

McPhili : JoiningIn
conductToL

→ ToL ∗ (38)

Phili(Eater) : Disallowed
request
→ Disallowed, Fork i(ForLH) : Freed

gone
→ Claimed

McPhili : JoiningIn
conductToL

→ ToL ∗ (39)

Fork i(ForLH) : Claimed
got
→ Claimed, Fork i+1(ForRH) : Freed

gone
→ Claimed

McPhili : JoiningIn
conductToR

→ ToR ∗ (40)

Phili(Eater) : Disallowed
request
→ Allowed, Fork i+1(ForRH) : Claimed

got
→ Claimed

McPhili : JoiningIn
conductToR

→ ToR ∗ Phili(Eater) : Allowed
done
→ Disallowed, (41)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

McPhili : JoiningIn
conductToR

→ ToR ∗ Phili(Eater) : Disallowed
request
→ Disallowed, (42)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

triv
→ Claimed

Rule (37) removes the as-is choreography. Here, (38)–(41), with McPhili in
JoiningIn, cover the four previous choreography steps of the as-is protocol, cf.
rules (17–20), but now orchestrated. Rules (38) and (39) lead the conductor to
state ToL to continue conducting the original L-order; rules (40) and (41) lead
the conductor to state ToR to continue according to the new R-order. In these
two steps the swap from L-order to R-order is easy as it happens to coincide
with stopping to eat or with getting hungry anew. Rule (42) is needed to escape
deadlock, a subtlety not further elaborated here.

McPhili : ToR
conductToR

→ ToR ∗ (43)

Phili(Eater) : Disallowed
request
→ Disallowed, Fork i+1(ForRH) : Freed

gone
→ Claimed

McPhili : ToR
conductToR

→ ToR ∗ (44)

Fork i+1(ForRH) : Claimed
got
→ Claimed, Fork i(ForLH) : Freed

gone
→ Claimed

McPhili : ToR
conductToR

→ ToR ∗ (45)

Fork i(ForLH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed

McPhili : ToR
conductToR

→ ToR ∗ Phili(Eater) : Allowed
done
→ Disallowed, (46)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

four similar rules for cycling in ToL (47)–(50)

Rules (43)–(46), with McPhili in ToR, cover the new R-order, basically imple-
menting the to-be rules (11)–(14), but conducted by McPhili while sojourning

14

in state ToR, waiting for McPal’s consent. The symmetric rules (47)–(50), with
McPhili staying in ToL are suppressed.

McPhili : ToL
choreofyToL

→ ToBeL ∗ (51)

Phili(Eater) : Disallowed
request
→ Disallowed, Fork i(ForLH) : Freed

gone
→ Claimed,

McPhili [Crs i := Crs i − Crs i,orch + Crs i,toBeL, Crs i,toBe := Crs i,toBeL]

McPhili : ToL
choreofyToL

→ ToBeL ∗ (52)

Fork i(ForLH) : Claimed
got
→ Claimed, Fork i+1(ForRH) : Freed

gone
→ Claimed,

McPhili [Crs i := Crs i − Crs i,orch + Crs i,toBeL, Crs i,toBe := Crs i,toBeL]

McPhili : ToL
choreofyToL

→ ToBeL ∗ (53)

Fork i+1(ForRH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed,

McPhili [Crs i := Crs i − Crs i,orch + Crs i,toBeL, Crs i,toBe := Crs i,toBeL]

McPhili : ToL
choreofyToL

→ ToBeL ∗ Phili(Eater) : Allowed
done
→ Disallowed, (54)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed,

McPhili[Crs i := Crs i − Crs i,orch + Crs i,toBeL, Crs i,toBe := Crs i,toBeL]

Rules (51)–(54), with McPhili moving from ToL to ToBeL, cover the installment
of L-order conducting as the to-be protocol. In addition, all orchestration in Crs i

is replaced by the L-order choreography.

McPhili : ToL
choreofyToR

→ ToBeR ∗ Phili(Eater) : Disallowed
request
→ Disallowed, (55)

Fork i(ForLH) : Freed
triv
→ Freed, Fork i+1(ForRH) : Freed

gone
→ Claimed,

McPhili[Crs i := Crs i − Crs i,orch + Crs i,toBeR, Crs i,toBe := Crs i,toBeR]

McPhili : ToL
choreofyToR

→ ToBeR ∗ (56)

Fork i(ForLH) : Claimed
triv
→ Freed, Fork i+1(ForRH) : Freed

gone
→ Claimed,

McPhili[Crs i := Crs i − Crs i,orch + Crs i,toBeR, Crs i,toBe := Crs i,toBeR]

McPhili : ToL
choreofyToR

→ ToBeR ∗ Phili(Eater) : Disallowed
triv
→ Disallowed, (57)

Fork i(ForLH) : Claimed
triv
→ Freed, Fork i+1(ForRH) : Claimed

triv
→ Claimed,

McPhili : [Crs i := Crs i − Crs i,orch + Crs i,toBeR, Crs i,toBe := Crs i,toBeR]

McPhili : ToL
choreofyToR

→ ToBeR ∗ (58)

Phili(Eater) : Disallowed
request
→ Allowed, Fork i+1(ForRH) : Claimed

got
→ Claimed,

McPhili[Crs i := Crs i − Crs i,orch + Crs i,toBeR, Crs i,toBe := Crs i,toBeR]

McPhili : ToL
choreofyToR

→ ToBeR ∗ Phili(Eater) : Allowed
done
→ Disallowed, (59)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed,

McPhili[Crs i := Crs i − Crs i,orch + Crs i,toBeR, Crs i,toBe := Crs i,toBeR]

nine rules for leaving ToR, similar to rules (51)–(59) (60)–(68)

Rules (55)–(59), with McPhili heading for ToBeR, cover the orchestrated swap-
ping from L-order to R-order, thereby installing it as choreography. In particular,
(55) covers claiming the first (right) Fork without having to undo an earlier claim
of the left Fork. Contrarily, (56) covers claiming the first (right) Fork together

15

with necessary undoing of an earlier claim of the left Fork. Notably, rule (57)
covers continuing to claim the first (right) Fork together with necessary undoing
of an earlier claim of the left Fork. Thus, (57) provides an escape from deadlock,
similar to rule (42). Rule (58) and (59) cover starting and stopping to eat, for the
last time as resulting from L-order. The symmetric rules (60)–(68) for leaving
ToR are omitted.

Finally, the rule sets Crs i,toBeL and Crs i,toBeR contain the choreography rules
for the to-be-situation in L-order and in R-order, rules (69)–(72) and (73)–(76)
respectively.

∗ Phili(Eater) : Disallowed
request
→ Disallowed, Fork i(ForLH) : Freed

gone
→ Claimed (69)

∗ Fork i(ForLH) : Claimed
got
→ Claimed, Fork i+1(ForRH) : Freed

gone
→ Claimed (70)

∗ Fork i+1(ForRH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed (71)

∗ Phili(Eater) : Allowed
done
→ Disallowed, (72)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

∗ Phili(Eater) : Disallowed
request
→ Disallowed, Fork i+1(ForRH) : Freed

gone
→ Claimed (73)

∗ Fork i+1(ForRH) : Claimed
got
→ Claimed, Fork i(ForLH) : Freed

gone
→ Claimed (74)

∗ Fork i(ForLH) : Claimed
got
→ Claimed, Phili(Eater) : Disallowed

request
→ Allowed (75)

∗ Phili(Eater) : Allowed
done
→ Disallowed, (76)

Fork i(ForLH) : Claimed
got
→ Freed, Fork i+1(ForRH) : Claimed

got
→ Freed

Note, rules (17)–(76) cover all migration trajectories. The rather large number
of sixty rules is the consequence of our aim to distribute the migration, thus
revealing the distributed potential of the Paradigm-McPal tandem for system
adaptation by giving freedom to McPhils as delegates. As final remark we note,
neither the STDs of Phils and Forks nor their roles Eater, ForLH, and ForRH

roles had to be changed: the migration is fully situated within the coordination
of the five ongoing collaborations. Again, Phil and Fork components remain
running while the system migrates, dynamically indeed.

6 Discussion and concluding remarks

In the setting of component-based system development, we have addressed dy-
namic system adaptation without any form of quiescence. By using the coordi-
nation modeling language Paradigm, in combination with the special component
McPal, we particularly underlined the suitability of the approach for dynamic
adaptation in a distributed manner. The distributed potential of the Paradigm-
McPal tandem is our main result, actually revealed through delegation among
helpers. Concrete form to the distributive aspect is given via the dining philoso-
phers example: letting the system adapt itself from a rather bad solution (dead-
lock) to a substantially better one having neither deadlock nor starvation.

In the context of the example, the distributed character of the adaption
produces another three new results as spin-off, all three showing a wider reach

16

of the approach: (i) creation/deletion of STDs, (ii) adaptation with self-healing,
(iii) behaviour computation. We elaborate on the three of them first.

In line with the coordination features offered by Paradigm, distribution of
adaptation is achieved through delegation. Moreover, as adaptation is towards an
originally unforeseen to-be solution, delegation thereof is brought into action by
McPal. This results in concrete delegation to originally unforeseen components
McPhili, one per collaboration Phil2Forks i. As the McPhil components exist
neither at the time the as-is solution is ongoing with McPal in hibernation nor
at the time the to-be solution is ongoing with McPal in hibernation, in this case
we model both STD creation and STD deletion in Paradigm, at the start and
at the end of McPal’s non-hibernating phase Migrating, respectively. Modeling
creation and deletion is achieved by simulating it via the phases of the various
McPhili(Evol) roles: creation of McPhili when bringing it to life by leaving phase
Passive; deletion of McPhili when taking its life by returning to phase Passive.
This way, STDs for components and for their roles can easily be created and
deleted in a dynamically consistent manner, as all this comes down to suitable
coordination.

As explained at the start of Section 4, coordinating adaptation, referred to
as migration, is being modeled in state JITting such that different to-be sit-
uations can be reached, possibly through different migration trajectories. Ac-
cordingly, the migration model distributes the migration coordination among
five helper McPhili, with the initial aim of locally achieving a reasonable result.
Then McPal, by centrally collecting the partial results and comparing them in
state Delegated, redistributes additional, specific alignment directives among the
same five helper McPhili. After execution of the directives, final results are gath-
ered and compiled into the particular to-be solution arising from the distributed
migration coordination effort. The self-healing aspect, explicitly present in this
example, lies in the activities occurring in state Delegated in view of selecting
one out of eight outgoing action-transitions to state Gathering: rules (25)–(32)
specify which particular alignment has to be done. The selection decision is the
self-healing: it is solely based on trap information, certain combinations of five
halfwayL vs. halfwayR traps having been entered. This means, it is solely based
on intermediate migration results. Only in case of the two actions goAheadLR or
goAheadRL the self-healing is empty; in the six other cases there is at least one
adjustment from L-order to R-order or vice versa, and often two. Please note,
such adjustments indeed arise on-the-fly of the still ongoing migration. Also in-
teresting to note is, the self-healing directives are given at the level of McPal,
the self-healing directives are performed at the (lower) delegation level of the
five helper McPhili, very much in line with the architectural ideas in [15].

The above form of self-healing is finalized in McPal’s state Gathering. There
the final to-be model is compiled into Crs toBe, through composition of smaller
model fragments composed to that aim by each helper McPhili. Fragments are
about behaviour, so their composition certainly is behaviour computation, at
the level of McPal as well as at the level of each McPhili. Thus, our behaviour
computation is a distributed computation.

17

Another interesting feature of the example is, the seamless zipping of a con-
ductor into a choreography, turning it into an ‘equivalent’ orchestration. Con-
versely, the seamless zipping of a conductor out of an orchestration, turns it
into the ‘equivalent’ choreography. In this perspective, the temporary conduc-
tor McPhili is reminiscent to the notion of a ‘scaffold’ in [20]. In our example,
through the additional Evol role of a conductor McPhili, the scaffold has addi-
tional flexibility, changing phase-wise, while the model remains ongoing during
alterations as usual.

As one might have observed, quite some redundancy appears in the above.
(i) Paradigm has it in the role concept, repeating essence of component dynam-
ics in view of exogenous coordination via consistency rules. (ii) Two roles per
Fork introduce even more redundancy in view of architectural separation of five
collaborative concerns. Behavioural redundancy is present too, organized in line
with the five collaboarations Phil2Forks i: (iii) After any helper McPhili has
communicated its partial result, it possibly has to undo the partial result. Or
(iv) McPhili possibly does essentially nothing, as partial result and local as-is as
well as local to-be collaboration remain unchanged (L: left fork first, as always).
This means, within the environment of the other four ongoing collaborations,
a single McPhili’s behaviour computation robustly meanders towards its final
result instead of going there straightforwardly.

During the final panel session at FACS 2010 the above four italicized charac-
teristics –robust instead of correct, environment as first class citizen, exogenous
coordination, partial results– have been positioned [7] as crucial for service-orien-
tation in comparison to component technology. They reflect the additional flexi-
bility service-orientation has to offer, when taking the next step from component
technology. In Paradigm, these characteristics arise from redundancy designed
on purpose: in language, in model structure and in model dynamics.

Recently, the Paradigm-McPal tandem is being deployed within Edafmis.
The ITEA-project Edafmis aims at innovative integration of ICT-support from
different advanced imaging systems into non-standard medical intervention prac-
tice, such that all flexibility needed during such interventions can be sustained
smoothly and quickly, adequately and pleasantly. Particularly, the possibility for
distributed migrations, as presented here, is of great value.

As presenting our model uses the full size of the paper, we are not able to
address formal verification and further analysis of the migration here. We do
have some results already. In future work we will report on it in more detail, in
combination with other interesting migrations of dining philosophers.

References

1. M. Alia et al. Managing distributed adaptation of mobile applications. In J. In-
dulska and K. Raymond, editors, Proc. DAIS 2007, pages 104–118. LNCS 4531,
2007.

2. R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic software
architectures. In E. Astesiano, editor, Proc. FASE 1998, pages 21–37. LNCS 1382,
1998.

18

3. S. Andova, L.P.J. Groenewegen, J. Stafleu, and E.P. de Vink. Formalizing adapta-
tion on-the-fly. In G. Salaün and M. Sirjani, editors, Proc. FOCLASA 2009, pages
23–44. ENTCS 255, 2009.

4. S. Andova, L.P.J. Groenewegen, J.H.S. Verschuren, and E.P. de Vink. Architecting
security with Paradigm. In R. de Lemos et al., editor, Architecting Dependable
Systems VI, pages 255–283. LNCS 5835, 2009.

5. S. Andova, L.P.J. Groenewegen, and E.P. de Vink. Dynamic consistency in pro-
cess algebra: From Paradigm to ACP. Science of Computer Programming, 2010.
doi:10.1016/j.scico.2010.04.011, 45pp.

6. S. Andova, L.P.J. Groenewegen, and E.P. de Vink. Towards dynamic adaptation of
probabilistic systems. In Proc. ISoLa 2010, Part II, Heraclion. LNCS 6416, 2010.
To appear.

7. F. Arbab, 2010. Personal communication.
8. N. Bencomo et al. Dynamically adaptive systems are product lines too: Using

model-driven techniques to capture dynamic variability of adaptive systems. In
Proc. DSPL 2008, pages 23–32. Limerick, 2008.

9. K.N. Biyani and S.S. Kulkarni. Assurance of dynamic adaptation in distributed
systems. Journal of Parallel Distributed Computing, 68:1097–1112, 2008.

10. J.S. Bradbury et al. A survey of self-management in dynamic software architecture
specifications. In D. Garlan, J. Kramer, and A.L. Wolf, editors, Proc. WOSS 2004,
pages 28–33. ACM, 2004.

11. A. Bucchiarone et al. Self-repairing systems modeling and verification using agg.
In Proc. WICSA/ECSA 2009, Cambridge, pages 181–190. IEEE, 2009.

12. H. Ehrig et al. Formal analysis and verification of self-healing systems. In D. Rosen-
blum and G. Taentzer, editors, Proc. FASE 2010, pages 139–155. LNCS 6013, 2010.

13. L. Groenewegen and E. de Vink. Evolution-on-the-fly with Paradigm. In
P. Ciancarini and H. Wiklicky, editors, Proc. Coordination 2006, pages 97–112.
LNCS 4038, 2006.

14. J. Kramer and J. Magee. The evolving philosophers problem: dynamic change
management. IEEE Transactions on Software Engineering, 16:1293–1306, 1990.

15. J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In L.C.
Briand and A.L. Wolf, editors, Proc. FOSE 2007, pages 259–268. IEEE, 2007.

16. J. Magee and J. Kramer. Dynamic structure in software architectures. SIGSOFT
Software Engineering Notes, 21:3–14, 1996.

17. T. Melliti, P. Poizat, and S.B. Mokhtar. Distributed behavioural adaptation for
the automatic composition of semantic services. In J.L. Fiadeiro and P. Inverardi,
editors, Proc. FASE 2008, pages 146–162. LNCS 4961, 2008.

18. B. Morin et al. An aspect-oriented and model-driven approach for managing dy-
namic variability. In K. Czarnecki et al., editor, Proc. MoDELS 2008, pages 782–
796. LNCS 5301, 2008.

19. M.-T. Segarra and F. André. A distributed dynamic adaptation model for
component-based applications. In I. Awan et al., editor, Proc. AINA 2009, pages
525–529. IEEE, 2009.

20. A.W. Stam. Interaction Protocols in PARADIGM. PhD thesis, LIACS, Leiden
University, 2009.

21. M. Yarvis, P. Reiher, and G.J. Popek. Conductor: A framework for distributed
adaptation. In Proc. HOTOS 1999, Rio Rico, pages 44–51. IEEE, 1999.

22. J. Zhang, H.J. Goldsby, and B.H.C. Cheng. Modular verification of dynamically
adaptive systems. In K.J. Sullivan et al., editor, Proc. AOSD 2009, pages 161–172.
ACM, 2009.

19

