Skip to main content

On Stability of Adaptive Similarity Measures for Content-Based Image Retrieval

  • Conference paper
Advances in Multimedia Modeling (MMM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7131))

Included in the following conference series:

  • 2068 Accesses

Abstract

Retrieving similar images is a challenging task for today’s content-based retrieval systems. Aiming at high retrieval performance, these systems frequently capture the user’s notion of similarity through expressive image models and adaptive similarity measures, which try to approximate the individual user-dependent notion of similarity as close as possible. As image models appearing on the query side can significantly differ in quality compared to those stored in the multimedia database, similarity measures have to be robust against these individual quality changes in order to maintain high retrieval performance. In order to evaluate the robustness of similarity measures, we introduce the general concept of the stability of a similarity measure with respect to query modifying transformations describing the change in quality on the query side. In addition, we include a comparison of the stability of the major state-of-the-art adaptive similarity measures based on different benchmark image databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distances for content-based similarity. In: Proc. ACM International Conference on Multimedia, pp. 697–700 (2009)

    Google Scholar 

  2. Beecks, C., Uysal, M.S., Seidl, T.: A comparative study of similarity measures for content-based multimedia retrieval. In: Proc. IEEE International Conference on Multimedia & Expo, pp. 1552–1557 (2010)

    Google Scholar 

  3. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proc. ACM International Conference on Image and Video Retrieval, pp. 438–445 (2010)

    Google Scholar 

  4. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 1–60 (2008)

    Article  Google Scholar 

  5. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples an incremental bayesian approach tested on 101 object categories. In: Proc. of the Workshop on Generative-Model Based Vision (2004)

    Google Scholar 

  6. Geusebroek, J.-M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam Library of Object Images. International Journal of Computer Vision 61(1), 103–112 (2005)

    Article  Google Scholar 

  7. Hu, R., Rüger, S., Song, D., Liu, H., Huang, Z.: Dissimilarity measures for content-based image retrieval. In: Proc. IEEE International Conference on Multimedia & Expo, pp. 1365–1368 (2008)

    Google Scholar 

  8. Huiskes, M.J., Lew, M.S.: The mir flickr retrieval evaluation. In: Proc. of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 39–43 (2008)

    Google Scholar 

  9. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.A.: Comparing Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  10. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20, 422–446 (2002)

    Article  Google Scholar 

  11. Kent, A., Berry, M.M., Luehrs, F.U., Perry, J.W.: Machine literature searching viii. operational criteria for designing information retrieval systems. American Documentation 6(2), 93–101 (1955)

    Article  Google Scholar 

  12. Leow, W.K., Li, R.: The analysis and applications of adaptive-binning color histograms. Computer Vision and Image Understanding 94(1-3), 67–91 (2004)

    Article  Google Scholar 

  13. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications 2(1), 1–19 (2006)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  15. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  17. Nene, S., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100). Technical report, Department of Computer Science, Columbia University (1996)

    Google Scholar 

  18. Park, B.G., Lee, K.M., Lee, S.U.: Color-based image retrieval using perceptually modified Hausdorff distance. Journal on Image and Video Processing 2008, 1–10 (2008)

    Google Scholar 

  19. Rubner, Y., Puzicha, J., Tomasi, C., Buhmann, J.M.: Empirical evaluation of dissimilarity measures for color and texture. Computer Vision and Image Understanding 84(1), 25–43 (2001)

    Article  MATH  Google Scholar 

  20. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  21. Sebe, N., Lew, M.S., Zhou, X., Huang, T.S., Bakker, E.M.: The state of the art in image and video retrieval. In: Proc. ACM International Conference on Image and Video Retrieval, pp. 1–8 (2003)

    Google Scholar 

  22. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision, pp. 1470–1477 (2003)

    Google Scholar 

  23. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  24. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)

    Article  Google Scholar 

  25. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)

    Google Scholar 

  26. Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 947–963 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beecks, C., Seidl, T. (2012). On Stability of Adaptive Similarity Measures for Content-Based Image Retrieval. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, CW., Andreopoulos, Y., Breiteneder, C. (eds) Advances in Multimedia Modeling. MMM 2012. Lecture Notes in Computer Science, vol 7131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27355-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27355-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27354-4

  • Online ISBN: 978-3-642-27355-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics