Abstract
In this paper, we propose an audio-visual approach to video genre categorization. Audio information is extracted at block-level, which has the advantage of capturing local temporal information. At temporal structural level, we asses action contents with respect to human perception. Further, color perception is quantified with statistics of color distribution, elementary hues, color properties and relationship of color. The last category of descriptors determines statistics of contour geometry. An extensive evaluation of this multi-modal approach based on on more than 91 hours of video footage is presented. We obtain average precision and recall ratios within [87% − 100%] and [77% − 100%], respectively, while average correct classification is up to 97%. Additionally, movies displayed according to feature-based coordinates in a virtual 3D browsing environment tend to regroup with respect to genre, which has potential application with real content-based browsing systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeaton, A.F., Over, P., Kraaij, W.: High-Level Feature Detection from Video in TRECVid: a 5-Year Retrospective of Achievements. In: Multimedia Content Analysis, Theory and Applications, pp. 151–174. Springer, Berlin (2009) ISBN 978-0-387-76567-9
Brezeale, D., Cook, D.J.: Automatic Video Classification: A Survey of the Literature. IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(3), 416–430 (2008)
Roach, M.J., Mason, J.S.D.: Video Genre Classification using Dynamics. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, USA, pp. 1557–1560 (2001)
Yuan, X., Lai, W., Mei, T., Hua, X.-S., Wu, X.-Q., Li, S.: Automatic Video Genre Categorization using Hierarchical SVM. In: IEEE Int. Conf. on Image Processing, pp. 2905–2908 (2006)
Montagnuolo, M., Messina, A.: Parallel Neural Networks for Multimodal Video Genre Classification. Multim. Tools and Applications 41(1), 125–159 (2009)
Wang, H., Divakaran, A., Vetro, A., Chang, S.-F., Sun, H.: Survey of Compressed-Domain Features used in Audio-Visual Indexing and Analysis. Journal of Visual Communication and Image Representation 14(2), 150–183 (2003)
Sikora, T.: The MPEG-7 Visual Standard for Content Description - An Overview. IEEE Trans. on Circ. and Systems for Video Technology 11(6), 696–702 (2001)
Seyerlehner, K., Schedl, M., Pohle, T., Knees, P.: Using Block-Level Features for Genre Classification, Tag Classification and Music Similarity Estimation. In: 6th Annual Music Information Retrieval Evaluation eXchange (MIREX 2010), Utrecht, Netherlands, August 9-13 (2010)
Ionescu, B., Buzuloiu, V., Lambert, P., Coquin, D.: Improved Cut Detection for the Segmentation of Animation Movies. In: IEEE Int. Conf. on Acoustic, Speech and Signal Processing, Toulouse, France (2006)
Fernando, W.A.C., Canagarajah, C.N., Bull, D.R.: Fade and Dissolve Detection in Uncompressed and Compressed Video Sequence. In: IEEE Int. Conf. on Image Processing, Kobe, Japan, pp. 299–303 (1999)
Ionescu, B., Buzuloiu, V., Lambert, P., Coquin, D.: Dissolve Detection in Abstract Video Contents. In: IEEE Int. Conf. on Acoustic, Speech and Signal Processing, Prague, Czech Republic (2011)
Ionescu, B., Coquin, D., Lambert, P., Buzuloiu, V.: A Fuzzy Color-Based Approach for Understanding Animated Movies Content in the Indexing Task. Eurasip Journal on Image and Video Processing (2008), doi:10.1155/2008/849625
Rasche, C.: An Approach to the Parameterization of Structure for Fast Categorization. Int. Journal of Computer Vision 87(3), 337–356 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ionescu, B., Seyerlehner, K., Rasche, C., Vertan, C., Lambert, P. (2012). Content-Based Video Description for Automatic Video Genre Categorization. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, CW., Andreopoulos, Y., Breiteneder, C. (eds) Advances in Multimedia Modeling. MMM 2012. Lecture Notes in Computer Science, vol 7131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27355-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-27355-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27354-4
Online ISBN: 978-3-642-27355-1
eBook Packages: Computer ScienceComputer Science (R0)